Liberal Olleta, Íñigo

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Liberal Olleta

First Name

Íñigo

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 37
  • PublicationOpen Access
    Geometry-invariant resonant cavities
    (Springer Nature, 2016) Liberal Olleta, Íñigo; Mahmoud, A. M.; Engheta, Nader; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Resonant cavities are one of the basic building blocks in various disciplines of science and technology, with numerous applications ranging from abstract theoretical modelling to everyday life devices. The eigenfrequencies of conventional cavities are a function of their geometry, and, thus, the size and shape of a resonant cavity is selected to operate at a specific frequency. Here we demonstrate theoretically the existence of geometry-invariant resonant cavities, that is, resonators whose eigenfrequencies are invariant with respect to geometrical deformations of their external boundaries. This effect is obtained by exploiting the unusual properties of zero-index metamaterials, such as epsilon-near-zero media, which enable decoupling of the temporal and spatial field variations in the lossless limit. This new class of resonators may inspire alternative design concepts, and it might lead to the first generation of deformable resonant devices.
  • PublicationOpen Access
    Narrowband and spectrally robust thermal emission from metallic thin films on top of epsilon-near-zero substrates
    (IEEE, 2022) Navajas Hernández, David; Pérez Escudero, José Manuel; Liberal Olleta, Íñigo; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    The absorption and emission of infrared radiation by ultra-thin metallic films is a key element in several thermal engineering applications such as heat and energy management, and thermal camouflage. However, ultra-thin metallic films are broadband and low-efficiency emitters. Here, we demonstrate numerically and experimentally that metallic films placed on top of epsilon-near-zero (ENZ) substrates become narrowband and efficient thermal emitters. Our experiments show that ENZ-based emitters feature a narrow linewidth whose frequency positioning is robust against variations in the geometry of the system and the observation angle. Moreover, since ENZ emitters are based on the material properties of the substrate, no nanofabrication processes are needed, opening the pathway towards widefield and large-scale applications.
  • PublicationOpen Access
    Direct observation of ideal electromagnetic fluids
    (Springer Nature, 2022) Li, Hao; Zhou, Ziheng; Sun, Wangyu; Lobet, Michaël; Engheta, Nader; Liberal Olleta, Íñigo; Li, Yue; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC
    Near-zero-index (NZI) media have been theoretically identified as media where electromagnetic radiations behave like ideal electromagnetic fluids. Within NZI media, the electromagnetic power flow obeys equations similar to those of motion for the velocity field in an ideal fluid, so that optical turbulence is intrinsically inhibited. Here, we experimentally observe the electromagnetic power flow distribution of such an ideal electromagnetic fluid propagating within a cutoff waveguide by a semi-analytical reconstruction technique. This technique provides direct proof of the inhibition of electromagnetic vorticity at the NZI frequency, even in the presence of complex obstacles and topological changes in the waveguide. Phase uniformity and spatially-static field distributions, essential characteristics of NZI materials, are also observed. Measurement of the same structure outside the NZI frequency range reveals existence of vortices in the power flow, as expected for conventional optical systems. Therefore, our results provide an important step forward in the development of ideal electromagnetic fluids, and introduce a tool to explore the subwavelength behavior of NZI media including fully vectorial and phase information.
  • PublicationOpen Access
    Superbackscattering antenna arrays
    (IEEE, 2015) Liberal Olleta, Íñigo; Ederra Urzainqui, Íñigo; Gonzalo García, Ramón; Ziolkowski, Richard W.; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    This article discusses the theory, design and practical implementation of superbackscattering antenna arrays. In analogy with Uzkov’s maximal directivity theorem, it is demonstrated that the maximal backscattering cross-section, normalized to the wavelength squared, of a linear array of N isotropic scatterers whose separation tends to zero is N2(N + 1)2=(4pi). This analytical result is validated via numerical optimization of the excitation coefficients, and the same procedure is utilized to assess the maximal backscattering of arrays of electric Hertzian dipoles (EHDs). It is found that electrically small arrays of two and three EHDs can enhance the backscattering by factors of 6.22 and 22.01, respectively, with respect to the maximum value generated by a single element. In addition, physical realizations of arrays featuring comparable enhancement factors can be straightforwardly designed by using a simple procedure inspired by Yagi-Uda antenna concepts. The practical implementations of such arrays based on copper wires and printed circuit technologies is also addressed.
  • PublicationOpen Access
    Quantum antenna arrays: the role of quantum interference on direction-dependent photon statistics
    (American Physical Society, 2018) Liberal Olleta, Íñigo; Ederra Urzainqui, Íñigo; Ziolkowski, Richard W.; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    We investigate the role of quantum interference phenomena on the characteristics of the fields radiated by an array of quantum emitters. In analogy to, but distinct from, classical outcomes, we demonstrate that the array geometry empowers control over direction-dependent photon statistics of arbitrary order. Our formulation enables the recognition of configurations providing spatial correlations with no classical counterpart. For example, we identify a system in which the angular distribution of the average number of photons is independent of the number and position of the emitters, while its higher-order photon statistics exhibit a directional behavior. These results extend our understanding of the fields generated by ensembles of quantum emitters, with potential applications to nonclassical light sources.
  • PublicationOpen Access
    Fe-rich ferromagnetic wires for self-sensing materials
    (IEEE, 2012) Liberal Olleta, Íñigo; Ederra Urzainqui, Íñigo; Gonzalo García, Ramón; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    The possibility of using Fe-rich wires in mechanical stress self-sensing materials is investigated. To this end, a retrieval technique aimed to characterize the high-frequency magnetoimpedance effect in ferromagnetic wires under mechanical stresses is proposed. The technique is based on the measurement of the wires inside a metallic rectangular waveguide, and it is validated through numerical simulations and tested with already published experimental data. In addition, the studied Fe-rich wires are characterized by the occurrence of the natural ferromagnetic resonance, whose frequency position increases from 7 GHz to 8.25 GHz for elongations ranging from 0 μm to 60 μm.
  • PublicationOpen Access
    A multipolar analysis of near-field absorption and scattering processes
    (IEEE, 2013) Liberal Olleta, Íñigo; Ederra Urzainqui, Íñigo; Gonzalo García, Ramón; Ziolkowski, Richard W.; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    A multipolar formulation is adopted to investigate the absorption and scattering processes involved in near-field interactions. This approach allows one to determine the upper bounds for the absorbed and radiated powers that would be achieved by an ideal lossless sensor, which are of particular interest, for example, to wireless power transfer (WPT), wireless sensors and near-field coupled radiators. The multipolar formulation also helps to extricate the fundamental compromises that must be addressed in the design of such systems, as well as to identify strategies that could approach their best possible performances. The general theory is illustrated with an example consisting of a coated sensor illuminated by a Hertzian dipole, which is a representative example of any scattering or radiating system based on small resonators. The example also serves to compare the performance characteristics obtained with different phenomena such as multipolar resonances, phaseinduced interference effects and cloaking.
  • PublicationOpen Access
    Near-zero-index media as electromagnetic ideal fluids
    (National Academy of Sciences, 2020) Liberal Olleta, Íñigo; Lobet, Michaël; Li, Yue; Engheta, Nader; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    Near-zero-index (NZI) supercoupling, the transmission of electromagnetic waves inside a waveguide irrespective of its shape, is a counterintuitive wave effect that finds applications in optical interconnects and engineering light-matter interactions. However, there is a limited knowledge on the local properties of the electromagnetic power flow associated with supercoupling phenomena. Here, we theoretically demonstrate that the power flow in two-dimensional (2D) NZI media is fully analogous to that of an ideal fluid. This result opens an interesting connection between NZI electrodynamics and fluid dynamics. This connection is used to explain the robustness of supercoupling against any geometrical deformation, to enable the analysis of the electromagnetic power flow around complex geometries, and to examine the power flow when the medium is doped with dielectric particles. Finally, electromagnetic ideal fluids where the turbulence is intrinsically inhibited might offer interesting technological possibilities, e.g., in the design of optical forces and for optical systems operating under extreme mechanical conditions.
  • PublicationOpen Access
    Induction theorem analysis of resonant nanoparticles: design of a huygens source nanoparticle laser
    (American Physical Society, 2014) Liberal Olleta, Íñigo; Ederra Urzainqui, Íñigo; Gonzalo García, Ramón; Ziolkowski, Richard W.; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    We propose an advanced formulation of standard antenna theory for the basic investigation and design of resonant nanoparticles. This methodology is based on transforming the original scattering problem into a radiation configuration by invoking the induction theorem. Then applying basic antenna theory principles, such as the suppression of any reactive power, the properties of the resonances are engineered. This nanoantenna approach has been validated by revisiting a number of well-known multilayered core-shell structures. It provides additional important physical insights into how the core-shell structures operate and it enables combinations of different resonant phenomena associated with them, e.g., plasmonic and high-ϵ resonances, in an intuitive manner. Its efficacy is demonstrated by designing a multilayered nanoparticle that achieves lasing with a maximum directivity in the forward direction and a null in the backward direction, i.e., a Huygens source nanoparticle laser.
  • PublicationOpen Access
    Generalized approach to quantum interference in lossy N-port devices via a singular value decomposition
    (Optica, 2022) Hernández Martínez, Osmery; Liberal Olleta, Íñigo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    Modeling quantum interference in the presence of dissipation is a critical aspect of quantum technologies. Including dissipation into the model of a linear device enables for assessing the detrimental impact of photon loss, as well as for studying dissipation-driven quantum state transformations. However, establishing the input-output relations characterizing quantum interference at a general lossy N-port network poses important theoretical challenges. Here, we propose a general procedure based on the singular value decomposition (SVD), which allows for the efficient calculation of the input-output relations for any arbitrary lossy linear device. In addition, we show how the SVD provides an intuitive description of the principle of operation of linear optical devices. We illustrate the applicability of our method by evaluating the input-output relations of popular reciprocal and nonreciprocal lossy linear devices, including devices with singular and nilpotent scattering matrices. Our method also enables the analysis of quantum interference in large lossy networks, as we exemplify with the study of an N-port epsilon-near-zero (ENZ) hub. We expect that our procedure will motivate future research on quantum interference in complex devices, as well as the realistic modelling of photon loss in linear lossy devices.