Liberal Olleta, Íñigo

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Liberal Olleta

First Name

Íñigo

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    Amorphous glass-coated ferromagnetic wires in microwave engineering
    (2013) Liberal Olleta, Íñigo; Gonzalo García, Ramón; Ederra Urzainqui, Íñigo; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    En esta tesis se ha estudiado el uso de hilos ferromagnéticos recubiertos de vidrio en ingeniería de microondas. Para este fin, se han formulado modelos analíticos y equivalentes circuitales de la interacción entre un hilo ferromagnético y campos electromagnéticos. Dichos modelos se han utilizado para estudiar los fenómenos más relevantes relacionados con la interacción entre un hilo ferromagnético y campos electromagnéticos, incluyendo la transición de efectos superficiales a volumétricos, y las múltiples peculiaridades del espectro de absorción. Además, se han investigado los límites fundamentales en el equilibrio de potencias presente en interacciones de un hilo ferromagnético con campos electromagnéticos, así como sus implicaciones tecnológicas. Estructuras consistentes en varios hilos ferromagnéticos se han modelado como materiales electromagnéticos artificiales (los cuales pertenecen a la clase de materiales dieléctricos con permitividad controlada por las propiedades magnéticas de los hilos) y superficies artificiales. Basado en estos estudios fundamentales, absorbentes electromagnéticos reconfigurables y sensores de estrés mecánico basados en técnicas de radar se han identificado como las aplicaciones más prometedoras. A este respecto, se han presentado diseños de prueba de concepto de un absorbente de banda ancha con una banda estrecha de reflexión, y un absorbente de banda estrecha. Dichos dispositivos podrían utilizarse en la práctica para monitorizar objetos ocultos a observadores externos, y para mitigar interferencias en comunicaciones inalámbricas. En lo concerniente a sensores de estrés mecánico basados en técnicas de radar, se ha presentado un procedimiento para caracterizar los hilos bajo estreses mecánicos. Utilizando dicha técnica se han caracterizado hilos en los que la posición en frecuencia de la resonancia ferromagnética natural aumenta en función del estrés aplicado. Estos resultados sugieren el uso de hilos ferromagnéticos para monitorizar estructuras arquitectónicas e implantes.
  • PublicationOpen Access
    Nanoparticle derived suppressed-scattering bands for radiative cooling
    (IEEE, 2023) Lezaun Capdevila, Carlos; Pérez Escudero, José Manuel; Torres García, Alicia E.; Caggiano, Antonio; Peralta, Ignacio; Dolado, Jorge S.; Liberal Olleta, Íñigo; Beruete Díaz, Miguel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    Light scattering using resonant nanoparticles is crucial for improving sun irradiance reflection in a daytime radiative cooler. Popular nanoparticles in radiative cooling literature are analyzed in terms of scattering performance due to material dispersion. Different scattering properties in the infrared range have been detected while a similar behavior can be achieved in the solar range due to changes in material dispersion. Also, suppressed scattering windows are produced by dispersive nanoparticles, allowing high reflectance while enabling thermal emission selectively. Material dispersion alone produces such scattering windows, thus, given a material, they will always remain in the same region regardless geometry and location of particles. Lastly, calcium silicate hydrate (CSH), the main phase of concrete, is studied as a dispersive host example. These results demonstrate the importance of a co-design between host and nanoparticles dispersion for daytime radiative cooling and that nanoporosities design are a key ingredient that could allow concrete-based daytime radiative coolers.
  • PublicationOpen Access
    Radiative cooling properties of portlandite and tobermorite: two cementitious minerals of great relevance in concrete science and technology
    (American Chemical Society, 2023-06-23) Dolado, Jorge S.; Goracci, Guido; Arrese-Igor, Silvia; Ayuela, Andrés; Torres Betancourt, Angie Tatiana; Liberal Olleta, Íñigo; Beruete Díaz, Miguel; Gaitero, Juan J.; Cagnoni, Matteo; Cappelluti, Federica; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    Although concrete and cement-based materials are the most engineered materials employed by mankind, their potential for use in daytime radiative cooling applications has yet to be fully explored. Due to its complex structure, which is composed of multiple phases and textural details, fine-tuning of concrete is impossible without first analyzing its most important ingredients. Here, the radiative cooling properties of Portlandite (Ca(OH)2) and Tobermorite (Ca5Si6O16(OH)2·4H2O) are studied due to their crucial relevance in cement and concrete science and technology. Our findings demonstrate that, in contrast to concrete (which is a strong infrared emitter but a poor sun reflector), both Portlandite and Tobermorite exhibit good radiative cooling capabilities. These results provide solid evidence that, with the correct optimization of composition and porosity, concrete can be transformed into a material suitable for daytime radiative cooling.
  • PublicationOpen Access
    A multipolar analysis of near-field absorption and scattering processes
    (IEEE, 2013) Liberal Olleta, Íñigo; Ederra Urzainqui, Íñigo; Gonzalo García, Ramón; Ziolkowski, Richard W.; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    A multipolar formulation is adopted to investigate the absorption and scattering processes involved in near-field interactions. This approach allows one to determine the upper bounds for the absorbed and radiated powers that would be achieved by an ideal lossless sensor, which are of particular interest, for example, to wireless power transfer (WPT), wireless sensors and near-field coupled radiators. The multipolar formulation also helps to extricate the fundamental compromises that must be addressed in the design of such systems, as well as to identify strategies that could approach their best possible performances. The general theory is illustrated with an example consisting of a coated sensor illuminated by a Hertzian dipole, which is a representative example of any scattering or radiating system based on small resonators. The example also serves to compare the performance characteristics obtained with different phenomena such as multipolar resonances, phaseinduced interference effects and cloaking.