Person: Puertas Arbizu, Ignacio
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Puertas Arbizu
First Name
Ignacio
person.page.departamento
Ingeniería
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
30 results
Search Results
Now showing 1 - 10 of 30
Publication Open Access Análisis de la influencia de las condiciones de proceso sobre el acabado superficial de materiales cerámicos fabricados por electroerosión(CENIM, 2004) Puertas Arbizu, Ignacio; Luis Pérez, Carmelo Javier; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen IngeniaritzaEl mecanizado por electroerosión (en inglés, Electrical Discharge Machining, EDM) constituye una alternativa emergente frente a otros procesos de fabricación de materiales cerámicos conductores, tales como: mecanizado por láser, mecanizado electroquímico, chorro de agua con abrasivos, mecanizado por ultrasonidos y rectificado con muela de diamante. Debido a su interés en el ámbito industrial, en este trabajo se lleva a cabo un estudio de la influencia de las condiciones de operación sobre el aspecto superficial de tres materiales cerámicos conductores: carburo de boro prensado en caliente (B4C), carburo de silicio infiltrado con silicio (SiSiC) y carburo de wolframio en matriz metálica de cobalto (WC-Co), electroerosionados bajo diferentes condiciones de mecanizado y para el caso particular de regímenes de acabado (Ra ≤ 1 μm).Publication Open Access A proposal of a constitutive description for aluminium alloys in both cold and hot working(MDPI, 2016) León Iriarte, Javier; Luis Pérez, Carmelo Javier; Fuertes Bonel, Juan Pablo; Puertas Arbizu, Ignacio; Luri Irigoyen, Rodrigo; Salcedo Pérez, Daniel; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen IngeniaritzaThe most important difficulties when the behaviour of a part that is subjected to external mechanical forces is simulated deal with the determination of both the material thermo-mechanical properties and its boundary conditions. The accuracy of the results obtained from the simulation is directly related to the knowledge of the flow stress curve. Therefore, the determination of a material flow rule which is valid for both a wide temperature range and different initial deformation conditions in the starting material presents a great deal of interest when simulation results close to the experimental values are required to be obtained. In this present study, a novel flow stress curve is proposed that is able to accurately predict the behaviour of both materials with no previous accumulated strain and materials that have been previously subjected to severe plastic deformation processes. Moreover, it is possible to use it both for hot and cold working. The results are analysed in a wide test temperature range, which varies from room temperature to 300 °C, and from material previously processed by angular channel extrusion or with no previous strain accumulated. It is shown that the flow rule proposed is effective to model the material behaviour in a wide temperature range and it makes it possible to take the recrystallization phenomena that appear in previously deformed materials into account. In addition, the results obtained are compared with those predicted by other flow rules that exist in the prior literature. Furthermore, the study is complemented with finite element simulations and with a comparison between simulation and experimental results.Publication Open Access Design and mechanical properties analysis of AA5083 ultrafine grained cams(MDPI, 2017) Salcedo Pérez, Daniel; Luis Pérez, Carmelo Javier; Luri Irigoyen, Rodrigo; Puertas Arbizu, Ignacio; León Iriarte, Javier; Fuertes Bonel, Juan Pablo; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen IngeniaritzaThis present research work deals with the development of ultrafine grained cams obtained from previously ECAP (Equal Channel Angular Pressing)-processed material and manufactured by isothermal forging. The design and the manufacturing of the dies required for the isothermal forging of the cams are shown. Optimization techniques based on the combination of design of experiments, finite element and finite volume simulations are employed to develop the dies. A comparison is made between the mechanical properties obtained with the cams manufactured from material with no previous deformation and with those from previously SPD (Severe Plastic Deformation)-processed material. In addition, a comparative study between the experimental results and those obtained from the simulations is carried out. It has been demonstrated that it is possible to obtain ultrafine grained cams with an increase of 10.3% in the microhardness mean value as compared to that obtained from material with no previous deformation.Publication Open Access Design, optimization, and mechanical property analysis of a submicrometric aluminium alloy connecting rod(Hindawi, 2015) Fuertes Bonel, Juan Pablo; León Iriarte, Javier; Luis Pérez, Carmelo Javier; Salcedo Pérez, Daniel; Puertas Arbizu, Ignacio; Luri Irigoyen, Rodrigo; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen IngeniaritzaUltrafine grained materials have a great deal of both scientific and technological interest because they allow outstanding properties to be obtained. An improvement in the mechanical strength and in the ductility and a better fatigue behaviour are properties to be expected with these materials. However, in spite of the great number of scientific publications that deals with the mechanical property improvement, the number of practical applications of these materials is scant. In this present research work, equal channel angular pressing (ECAP) is used as a severe plastic deformation process (SPD) to obtain billets which are subsequently isothermally forged to obtain a connecting rod with submicrometric grain size. The optimization of the design process is shown as well as the die design. The objective variables to be fulfilled are the correct filling of the die and the required force to obtain the part. Moreover, a comparison is also included between the mechanical properties thus obtained and those obtained with traditional methods. Moreover, optical and SEM micrographs are also included in this research work.Publication Open Access Mechanical properties analysis of an Al-Mg alloy connecting rod with submicrometric structure(MDPI, 2015) León Iriarte, Javier; Salcedo Pérez, Daniel; Murillo Crespo, Óscar; Luis Pérez, Carmelo Javier; Fuertes Bonel, Juan Pablo; Puertas Arbizu, Ignacio; Luri Irigoyen, Rodrigo; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen IngeniaritzaOver these last few years, there has been a growing interest in developing mechanical components from submicrometric materials due to the significant improvement that these materials present compared to their original state. This present research work deals with the study of the mechanical properties of a connecting rod isothermally forged from different starting materials. These materials are as follows: annealed aluminum alloy (AA) 5754, the same alloy previously deformed through equal channel angular pressing (ECAP) and a third case where the previously ECAP-processed material is subjected to a recovery heat treatment. A comparison is made between finite volume (FV) simulations and experimental tests with respect to hardness, plastic strain and forging force. Furthermore, the improvement in the mechanical properties of the connecting rod forged from predeformed material is evaluated in comparison to the connecting rod forged with annealed material. The microstructure of both cases is also compared at the end of the manufacturing process.Publication Open Access Development of a machining strategy to manufacture SiSiC nuts by EDM(SAGE Publications, 2024) Torres Salcedo, Alexia; Puertas Arbizu, Ignacio; Luis Pérez, Carmelo Javier; Ingeniería; IngeniaritzaToday, the high-precision manufacturing of small cavities in difficult-to-machine materials is still a challenge, even more so if they need to be threaded. The machining time, the wear suffered by the electrodes and the surface finish are determining factors in the efficiency of the threading process. However, there is scant literature on this subject so there is a need to study the process and the parameters involved. Thus, this study presents a novel machining strategy for the manufacture of nuts using die-sinking electrical discharge machining (EDM). Moreover, the novelty of this strategy is that it is carried out in a single stage and with a conventional EDM generator. To do so, a design of experiments (DOE) methodology has been followed. First, the optimal machining conditions are determined by studying the influence of EDM parameters on operation variables and mathematical models are developed using multiple linear regression. These models allow the behavior of the response variables under study to be predicted. Finally, this machining strategy developed from the previous experimental results is validated in the manufacturing process of a final part, specifically a square nut. It can be concluded that the mathematical model is good enough to predict the experimental results. Thus, the new method presented and described in this present study allowed a nut to be obtained with a real arithmetic mean deviation of the roughness profile (Ra) value of 1.27 μm whereas the predicted value from the model was 1.28 μm. To do so, the machining conditions selected were: 4 A (current intensity), 5 µs (pulse time) and 0.4 (duty cycle), which also gave a material removal rate (MRR) value of 0.5370 mm3/min. The machining strategy proposed here may be used for future research works related to the manufacturing of mechanical joints made of conductive ceramic materials.Publication Open Access Spacing roughness parameters analysis on the EDM of TiB2(Elsevier, 2017) Torres Salcedo, Alexia; Luis Pérez, Carmelo Javier; Puertas Arbizu, Ignacio; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen IngeniaritzaTitanium diboride (TiB2) is a novel sintered ceramic material which has attracted a great deal of interest because of its excellent mechanical properties, wear resistance and chemical resistance. At present, this ceramic is used in specialized applications in such areas as impact resistant armor, cutting tools, crucibles and wear resistant coatings. In this present research work, effects of current intensity, pulse time and duty cycle on the spacing roughness parameters Sm and Pc have been studied. In addition, statistical tools based on the design of experiments as well as multiple linear regression techniques have been used. Experimental results suggest that the optimal conditions to obtain a minimum Sm of 52.60 gm and a maximum Pc of 190.60 cm(-1) were: 2 A, 5 mu s and 0.4, respectively, for current intensity, pulse time and duty cycle.Publication Open Access EDM machinability and surface roughness analysis of INCONEL 600 using graphite electrodes(Springer, 2016) Torres Salcedo, Alexia; Puertas Arbizu, Ignacio; Luis Pérez, Carmelo Javier; Ingeniería; IngeniaritzaPublication Open Access Análisis de la influencia del tratamiento térmico de envejecimiento en la modificación de las propiedades mecánicas de la aleación AA6060 procesada por ECAE(CENIM, 2011) Pérez Ruiz, Iván; Luis Pérez, Carmelo Javier; Luri Irigoyen, Rodrigo; León Iriarte, Javier; Puertas Arbizu, Ignacio; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen IngeniaritzaEn el presente trabajo se ha realizado un estudio de la modificación de las propiedades mecánicas de la aleación de aluminio AA6060 F, al ser deformada mediante deformación plástica severa empleando el proceso de extrusión en canal angular (ECAE). Asimismo, se ha efectuado un estudio del efecto del envejecimiento artificial sobre la modificación de dichas propiedades mecánicas. Para ello, se han realizado tratamientos térmicos a diferentes temperaturas y tiempos de permanencia, efectuando mediciones de dureza, ensayos de tracción, ensayos con péndulo Charpy y técnicas de revelado metalográfico, para conocer los comportamientos mecánicos y el estado del material. Existe un elevado número de publicaciones, que han analizado el efecto de tratamientos térmicos de envejecimiento en aleaciones de la serie 6000. Sin embargo, la aleación AA6060 no ha sido tan ampliamente estudiada. Por ello, en este trabajo se parte de una aleación comercial AA6060 en estado de bruto de colada, lo cual no ha sido estudiado hasta la fecha.Publication Open Access Optimization and modeling of ZrB2 ceramic processing by EDM for high-performance industrial applications(Elsevier, 2025-04-11) Luis Pérez, Carmelo Javier; Torres Salcedo, Alexia; Puertas Arbizu, Ignacio; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2This study investigates the Electrical Discharge Machining (EDM) of zirconium diboride (ZrB2), a novel conductive ceramic with exceptional properties, including high temperature resistance, excellent thermal conductivity, and remarkable hardness. These properties make ZrB2 highly suitable for extreme environments, such as aerospace and nuclear applications. To the best of our knowledge, no comprehensive studies have addressed the manufacturing of ZrB2 parts by EDM, positioning this research as a cutting-edge contribution. Two electrode materials, graphite (C) and copper-graphite (Cu–C), were used to analyze the material removal rate (MRR) and surface roughness (Ra) as functions of current intensity (I), pulse time (ti), and duty cycle (η). Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN) were used to model the response variables. While MLR was effective for MRR (R2 > 0.9), ANN outperformed it in predicting Ra, especially for Cu–C electrodes (R2 = 0.9366 vs. 0.3847 for MLR). Current intensity was the most influential parameter for MRR, while pulse time significantly affected Ra. Residual analysis confirmed ANN superior accuracy for Ra, with residuals below ±1 vs. ±2 for MLR. The study culminated in the successful EDM manufacture of a ZrB2 hexagonal nut, employing optimized parameters (I = 6 A, ti = 50 μs, η = 0.3, for the C electrode) derived using ANN models and particle swarm optimization. This result demonstrates the EDM process ability to produce high-precision components with complex geometries, showcasing its versatility and industrial potential. Therefore, this study broadens the understanding of ZrB2 machinability and expands its applications in advanced technologies.
- «
- 1 (current)
- 2
- 3
- »