Urtasun Erburu, Andoni
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Urtasun Erburu
First Name
Andoni
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Control strategy for an integrated photovoltaic-battery system(IEEE, 2017) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y ElectrónicaIn photovoltaic-battery systems, more attention is usually paid to the MPPT control while the battery management is put aside. This paper proposes two control strategies for an integrated PV-battery system, both of them making it possible to perform MPPT or regulate the battery voltage to its maximum value in order to prevent it from overcharging. Simulation results prove the feasibility of both controls.Publication Open Access Parameter-independent battery control based on series and parallel impedance emulation(IEEE, 2019) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Guinjoan Gispert, Francesc; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenAppropriate voltage control is essential in order to extend the useful life of a battery. However, when universal chargers are used, the design of this control becomes more complicated, given the fact that the battery impedance value may vary considerably, depending not only on the operating point but also on the type, size, and aging level of the battery. This paper first shows how the voltage regulation can become extremely variable or even unstable when the controller is designed according to the proposals in the literature. We then go on to propose the emulation of a series and parallel impedance with the battery, which is easy to implement and achieves a control that is completely independent of the battery connected. The simulation results obtained for batteries with resistances ranging from 10 mΩ to 1Ω, show the problems with existing controls and confirm that the proposed control response is similar for all the possible range of battery resistance.Publication Open Access Parameter-independent control for battery chargers based on virtual impedance emulation(IEEE, 2018) Urtasun Erburu, Andoni; Berrueta Irigoyen, Alberto; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y ElectrónicaAn effective battery voltage regulation is fundamental to extend battery lifetime and to avoid overvoltage. However, the design of this regulation is complicated due to the wide battery impedance range, which, when dealing with universal chargers, is dependent not only on the operating point but also on the battery type and size. This paper first shows how the voltage response becomes highly variable when designing the controller as described in the literature. Then, it proposes to emulate virtual impedance in parallel with the battery, making it possible to achieve a voltage control which is independent of battery characteristics. Experimental results are carried out for a new lithium-ion battery with 25 mΩ-impedance and an overused lead-acid battery with 400 mΩ-impedance. For this large impedance variation, the results evidence the problems of the conventional control and validate the superior performance of the proposed control.