Person: García Martínez, Begoña
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
García Martínez
First Name
Begoña
person.page.departamento
Ciencias de la Salud
person.page.instituteName
ORCID
0000-0002-0476-4900
person.page.upna
5048
Name
13 results
Search Results
Now showing 1 - 10 of 13
Publication Open Access Biofilm switch and immune response determinants at early stages of infection(Elsevier (Cell Press), 2013) Valle Turrillas, Jaione; Solano Goñi, Cristina; García Martínez, Begoña; Toledo Arana, Alejandro; Lasa Uzcudun, Íñigo; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: IIQ14066.RI1; Gobierno de Navarra / Nafarroako Gobernua: IIM13329.RI1; Gobierno de Navarra / Nafarroako Gobernua: 1312/2010Biofilm development is recognized as a major virulence factor underlying most chronic bacterial infections. When a biofilm community is established, planktonic cells growing in the surroundings of a tissue switch to a sessile lifestyle and start producing a biofilm matrix. The initial steps of in vivo biofilm development are poorly characterized and difficult to assess experimentally. A great amount of in vitro evidence has shown that accumulation of high levels of cyclic dinucleotides (c-di-NMPs) is the most prevalent hallmark governing the initiation of biofilm development by bacteria. As mentioned above, recent studies also link detection of c-di-NMPs by host cells with the activation of a type I interferon immune response against bacterial infections. We discuss here c-di-NMP signaling and the host immune response in the context of the initial steps of in vivo biofilm development.Publication Open Access The extradomain a of fibronectin enhances the efficacy of lipopolysaccharide defective Salmonella bacterins as vaccines in mice(BioMed Central, 2012) San Román Aberasturi, Beatriz; Lasa Uzcudun, Íñigo; Andrés Cara, Damián de; Amorena Zabalza, Beatriz; Lasarte, Juan José; Grilló Dolset, María Jesús; Garrido González, Victoria; Muñoz Álvaro, Pilar María; Arribillaga, Laura; García Martínez, Begoña; Andrés, Ximena de; Zabaleta Sanz de Acedo, Virginia; Mansilla, Cristina; Farrán Blanch, Inmaculada; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: IIM10865.RI1-EP12; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe Extradomain A from fibronectin (EDA) has an immunomodulatory role as fusion protein with viral and tumor antigens, but its effect when administered with bacteria has not been assessed. Here, we investigated the adjuvant effect of EDA in mice immunizations against Salmonella enterica subspecies enterica serovar Enteritidis (Salmonella Enteritidis). Since lipopolysaccharide (LPS) is a major virulence factor and the LPS O-polysaccharide (O-PS) is the immunodominant antigen in serological diagnostic tests, Salmonella mutants lacking O-PS (rough mutants) represent an interesting approach for developing new vaccines and diagnostic tests to differentiate infected and vaccinated animals (DIVA tests). Here, antigenic preparations (hot-saline extracts and formalin-inactivated bacterins) from two Salmonella Enteritidis rough mutants, carrying either intact (SE Delta waaL) or deep-defective (SE Delta gal) LPS-Core, were used in combination with EDA. Biotinylated bacterins, in particular SE Delta waaL bacterin, decorated with EDAvidin (EDA and streptavidin fusion protein) improved the protection conferred by hot-saline or bacterins alone and prevented significantly the virulent infection at least to the levels of live attenuated rough mutants. These findings demonstrate the adjuvant effect of EDAvidin when administered with biotinylated bacterins from Salmonella Enteritidis lacking O-PS and the usefulness of BEDA-SE Delta waaL as non-live vaccine in the mouse model.Publication Open Access Genetic reductionist approach for dissecting individual roles of GGDEF proteins within the c-di-GMP signaling network in Salmonella(National Academy of Sciences, 2009) Solano Goñi, Cristina; García Martínez, Begoña; Latasa Osta, Cristina; Toledo Arana, Alejandro; Zorraquino Salvo, Violeta; Valle Turrillas, Jaione; Casals, Joan; Pedroso, Enrique; Lasa Uzcudun, Íñigo; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaBacteria have developed an exclusive signal transduction system involving multiple diguanylate cyclase and phosphodiesterase domain-containing proteins (GGDEF and EAL/HD-GYP, respectively) that modulate the levels of the same diffusible molecule, 3 -5 -cyclic diguanylic acid (c-di-GMP), to transmit signals and obtain specific cellular responses. Current knowledge about c-di- GMP signaling has been inferred mainly from the analysis of recombinant bacteria that either lack or overproduce individual members of the pathway, without addressing potential compensatory effects or interferences between them. Here, we dissected c-di-GMP signaling by constructing a Salmonella strain lacking all GGDEF-domain proteins and then producing derivatives, each restoring 1 protein. Our analysis showed that most GGDEF proteins are constitutively expressed and that their expression levels are not interdependent. Complete deletion of genes encoding GGDEFdomain proteins abrogated virulence, motility, long-term survival, and cellulose and fimbriae synthesis. Separate restoration revealed that 4 proteins from Salmonella and 1 from Yersinia pestis exclusively restored cellulose synthesis in a c-di-GMP–dependent manner, indicating that c-di-GMP produced by different GGDEF proteins can activate the same target. However, the restored strain containing the STM4551-encoding gene recovered all other phenotypes by means of gene expression modulation independently of c-di-GMP. Specifically, fimbriae synthesis and virulence were recovered through regulation of csgD and the plasmid-encoded spvAB mRNA levels, respectively. This study provides evidence that the regulation of the GGDEF-domain proteins network occurs at 2 levels: a level that strictly requires c-di-GMP to control enzymatic activities directly, restricted to cellulose synthesis in our experimental conditions, and another that involves gene regulation for which c-di-GMP synthesis can be dispensable.Publication Open Access Salmonella biofilm development depends on the phosphorylation status of RcsB(American Society for Microbiology, 2012) Latasa Osta, Cristina; García Martínez, Begoña; Echeverz Sarasúa, Maite; Toledo Arana, Alejandro; Valle Turrillas, Jaione; Campoy Sánchez, Susana; García del Portillo, Francisco; Solano Goñi, Cristina; Lasa Uzcudun, Íñigo; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: IIM13329.RI1The Rcs phosphorelay pathway is a complex signaling pathway involved in the regulation of many cell surface structures in enteric bacteria. In response to environmental stimuli, the sensor histidine kinase (RcsC) autophosphorylates and then transfers the phosphate through intermediary steps to the response regulator (RcsB), which, once phosphorylated, regulates gene expression. Here, we show that Salmonella biofilm development depends on the phosphorylation status of RcsB. Thus, unphosphorylated RcsB, hitherto assumed to be inactive, is essential to activate the expression of the biofilm matrix compounds. The prevention of RcsB phosphorylation either by the disruption of the phosphorelay at the RcsC or RcsD level or by the production of a nonphosphorylatable RcsB allele induces biofilm development. On the contrary, the phosphorylation of RcsB by the constitutive activation of the Rcs pathway inhibits biofilm development, an effect that can be counteracted by the introduction of a nonphosphorylatable RcsB allele. The inhibition of biofilm development by phosphorylated RcsB is due to the repression of CsgD expression, through a mechanism dependent on the accumulation of the small noncoding RNA RprA. Our results indicate that unphosphorylated RcsB plays an active role for integrating environmental signals and, more broadly, that RcsB phosphorylation acts as a key switch between planktonic and sessile life-styles in Salmonella enterica serovar Typhimurium.Publication Open Access Biofilm matrix exoproteins induce a protective immune response against Staphylococcus aureus biofilm infection(American Society for Microbiology, 2014) Gil Puig, Carmen; Solano Goñi, Cristina; Burgui Erice, Saioa; Latasa Osta, Cristina; García Martínez, Begoña; Toledo Arana, Alejandro; Lasa Uzcudun, Íñigo; Valle Turrillas, Jaione; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: IIQ14066.RI1The Staphylococcus aureus biofilm mode of growth is associated with several chronic infections that are very difficult to treat due to the recalcitrant nature of biofilms to clearance by antimicrobials. Accordingly, there is an increasing interest in preventing the formation of S. aureus biofilms and developing efficient antibiofilm vaccines. Given the fact that during a biofilm-associated infection, the first primary interface between the host and the bacteria is the self-produced extracellular matrix, in this study we analyzed the potential of extracellular proteins found in the biofilm matrix to induce a protective immune response against S. aureus infections. By using proteomic approaches, we characterized the exoproteomes of exopolysaccharide-based and proteinbased biofilm matrices produced by two clinical S. aureus strains. Remarkably, results showed that independently of the nature of the biofilm matrix, a common core of secreted proteins is contained in both types of exoproteomes. Intradermal administration of an exoproteome extract of an exopolysaccharide-dependent biofilm induced a humoral immune response and elicited the production of interleukin 10 (IL-10) and IL-17 in mice. Antibodies against such an extract promoted opsonophagocytosis and killing of S. aureus. Immunization with the biofilm matrix exoproteome significantly reduced the number of bacterial cells inside a biofilm and on the surrounding tissue, using an in vivo model of mesh-associated biofilm infection. Furthermore, immunized mice also showed limited organ colonization by bacteria released from the matrix at the dispersive stage of the biofilm cycle. Altogether, these data illustrate the potential of biofilm matrix exoproteins as a promising candidate multivalent vaccine against S. aureus biofilm-associated infections.Publication Open Access El ozono no consigue la desinfección de los vehículos de emergencias de virus similares al SARS-CoV-2(SEMES, 2020) Biurrun Cía, Jorge; García Martínez, Begoña; Pérez Montero, Andrea; Kochan, Grazyna; Escors Murugarren, David; Crespo Martínez, José; Lasa Uzcudun, Íñigo; Echarri Sucunza, Alfredo; Ciencias de la Salud; Osasun ZientziakAnte la pandemia generada por el coronavirus SARS-CoV-2, la desinfección de los vehículos de emergencias supone una cuestión crucial. No en vano, son medio de transporte de pacientes contagiados y podrían ser vector de contagio para otros pacientes. Administraciones, servicios de emergencias y empresas privadas de transporte sanitario están aplicando diversas medidas para la desinfección de los vehículos. Actualmente, el uso de cañones productores de ozono es uno de los métodos más utilizados. El ozono es un gas oxidante con demostrada actividad desinfectante en medio acuoso que se utiliza para la desinfección de aguas y alimentos1-3. Sin embargo, su eficacia como desinfectante de superficies por nebulización no ha sido suficientemente probada y el Ministerio de Sanidad no lo registra como viricida para la desinfección de superficies4.Publication Open Access The regulon of the RNA chaperone CspA and its auto-regulation in Staphylococcus aureus(Oxford University Press, 2018) Caballero Sánchez, Carlos; Menéndez Gil, Pilar; Catalán Moreno, Arancha; Vergara Irigaray, Marta; García Martínez, Begoña; Segura, Víctor; Irurzun Domínguez, Naiara; Villanueva San Martín, Maite; Ruiz de los Mozos Aliaga, Igor; Solano Goñi, Cristina; Lasa Uzcudun, Íñigo; Toledo Arana, Alejandro; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaRNA-binding proteins (RBPs) are essential to finetune gene expression. RBPs containing the coldshock domain are RNA chaperones that have been extensively studied. However, the RNA targets and specific functions for many of them remain elusive. Here, combining comparative proteomics and RBPimmunoprecipitation- microarray profiling, we have determined the regulon of the RNA chaperone CspA of Staphylococcus aureus. Functional analysis revealed that proteins involved in carbohydrate and ribonucleotide metabolism, stress response and virulence gene expression were affected by cspA deletion. Stress-associated phenotypes such as increased bacterial aggregation and diminished resistance to oxidative-stress stood out. Integration of the proteome and targetome showed that CspA posttranscriptionally modulates both positively and negatively the expression of its targets, denoting additional functions to the previously proposed translation enhancement. One of these repressed targets was its own mRNA, indicating the presence of a negative post-transcriptional feedback loop. CspA bound the 5 UTR of its own mRNA disrupting a hairpin, which was previously described as an RNase III target. Thus, deletion of the cspA 5 UTR abrogated mRNA processing and auto-regulation. We propose that CspA interacts through a U-rich motif, which is located at the RNase III cleavage site, portraying CspA as a putative RNase III-antagonist.Publication Open Access Lack of the PGA exopolysaccharide in Salmonella as an adaptive trait for survival in the host(Public Library of Science, 2017) Echeverz Sarasúa, Maite; García Martínez, Begoña; Sabalza Baztán, Amaia; Valle Turrillas, Jaione; Gabaldón Estevan, Juan Antonio; Solano Goñi, Cristina; Lasa Uzcudun, Íñigo; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaMany bacteria build biofilm matrices using a conserved exopolysaccharide named PGA or PNAG (poly-β-1,6-N-acetyl-D-glucosamine). Interestingly, while E. coli and other members of the family Enterobacteriaceae encode the pgaABCD operon responsible for PGA synthesis, Salmonella lacks it. The evolutionary force driving this difference remains to be determined. Here, we report that Salmonella lost the pgaABCD operon after the divergence of Salmonella and Citrobacter clades, and previous to the diversification of the currently sequenced Salmonella strains. Reconstitution of the PGA machinery endows Salmonella with the capacity to produce PGA in a cyclic dimeric GMP (c-di-GMP) dependent manner. Outside the host, the PGA polysaccharide does not seem to provide any significant benefit to Salmonella: resistance against chlorine treatment, ultraviolet light irradiation, heavy metal stress and phage infection remained the same as in a strain producing cellulose, the main biofilm exopolysaccharide naturally produced by Salmonella. In contrast, PGA production proved to be deleterious to Salmonella survival inside the host, since it increased susceptibility to bile salts and oxidative stress, and hindered the capacity of S. Enteritidis to survive inside macrophages and to colonize extraintestinal organs, including the gallbladder. Altogether, our observations indicate that PGA is an antivirulence factor whose loss may have been a necessary event during Salmonella speciation to permit survival inside the host.Publication Open Access A DIVA vaccine strain lacking RpoS and the secondary messenger c-di-GMP for protection against salmonellosis in pigs(BioMed Central, 2020) Gil Puig, Carmen; Latasa Osta, Cristina; García Ona, Enrique; Lázaro, Isidro; Labairu, Javier; Echeverz Sarasúa, Maite; Burgui Erice, Saioa; García Martínez, Begoña; Lasa Uzcudun, Íñigo; Solano Goñi, Cristina; Ciencias de la Salud; Osasun Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako Gobernua, IIM 13329.RI1Salmonellosis is the second most common food-borne zoonosis in the European Union, with pigs being a major reservoir of this pathogen. Salmonella control in pig production requires multiple measures amongst which vaccination may be used to reduce subclinical carriage and shedding of prevalent serovars, such as Salmonella enterica serovar Typhimurium. Live attenuated vaccine strains offer advantages in terms of enhancing cell mediated immunity and allowing inoculation by the oral route. However, main failures of these vaccines are the limited cross-protection achieved against heterologous serovars and interference with serological monitoring for infection. We have recently shown that an attenuated S. Enteritidis strain (ΔXIII) is protective against S. Typhimurium in a murine infection model. ΔXIII strain harbours 13 chromosomal deletions that make it unable to produce the sigma factor RpoS and synthesize cyclic-di-GMP (c-di-GMP). In this study, our objectives were to test the protective effects of ΔXIII strain in swine and to investigate if the use of ΔXIII permits the discrimination of vaccinated from infected pigs. Results show that oral vaccination of pre-weaned piglets with ΔXIII cross-protected against a challenge with S. Typhimurium by reducing faecal shedding and ileocaecal lymph nodes colonization, both at the time of weaning and slaughter. Vaccinated pigs showed neither faecal shedding nor tissue persistence of the vaccine strain at weaning, ensuring the absence of ΔXIII strain by the time of slaughter. Moreover, lack of the SEN4316 protein in ΔXIII strain allowed the development of a serological test that enabled the differentiation of infected from vaccinated animals (DIVA).Publication Open Access Coordinated cyclic-di-GMP repression of salmonella motility through YcgR and cellulose(American Society for Microbiology, 2013) Zorraquino Salvo, Violeta; García Martínez, Begoña; Latasa Osta, Cristina; Echeverz Sarasúa, Maite; Toledo Arana, Alejandro; Valle Turrillas, Jaione; Lasa Uzcudun, Íñigo; Solano Goñi, Cristina; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: 1312/2010Cyclic di-GMP (c-di-GMP) is a secondary messenger that controls a variety of cellular processes, including the switch between a biofilm and a planktonic bacterial lifestyle. This nucleotide binds to cellular effectors in order to exert its regulatory functions. In Salmonella, two proteins, BcsA and YcgR, both of them containing a c-di-GMP binding PilZ domain, are the only known c-di-GMP receptors. BcsA, upon c-di-GMP binding, synthesizes cellulose, the main exopolysaccharide of the biofilm matrix. YcgR is dedicated to c-di-GMP-dependent inhibition of motility through its interaction with flagellar motor proteins. However, previous evidences indicate that in the absence of YcgR, there is still an additional element that mediates motility impairment under high c-di-GMP levels. Here we have uncovered that cellulose per se is the factor that further promotes inhibition of bacterial motility once high c-di-GMP contents drive the activation of a sessile lifestyle. Inactivation of different genes of the bcsABZC operon, mutation of the conserved residues in the RxxxR motif of the BcsA PilZ domain, or degradation of the cellulose produced by BcsA rescued the motility defect of ΔycgR strains in which high c-di-GMP levels were reached through the overexpression of diguanylate cyclases. High c-di-GMP levels provoked cellulose accumulation around cells that impeded flagellar rotation, probably by means of steric hindrance, without affecting flagellum gene expression, exportation, or assembly. Our results highlight the relevance of cellulose in Salmonella lifestyle switching as an architectural element that is both essential for biofilm development and required, in collaboration with YcgR, for complete motility inhibition.