Seco Meneses, Andrés
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Seco Meneses
First Name
Andrés
person.page.departamento
Ingeniería
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Technical and environmental characterization of hydraulic and alkaline binders(Elsevier, 2018) Espuelas Zuazu, Sandra; Echeverria Lazcano, Angel María; Marcelino Sádaba, Sara; Prieto Cobo, Eduardo; Seco Meneses, Andrés; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak; Gobierno de Navarra / Nafarroako Gobernua, 0011-1365-2017-000176Portland cement is a widely used binder in construction and building applications because of its good properties. Despite its convenience as construction material, the social demands and policies trends are requesting a lower impact and more sustainable cement manufacturing industry. The most effective ways to reach this goal are the substitution of clinker by different wastes or by-products in the cement composition or the development of more sustainable binders like the alkali activated binders. This work analyzes from a technical and environmental point of view the substitution of a clinker based CEM I common cement for the construction mortars manufacturing. Four common cements with different ground granulated blastfurnace slags (GGBS) or fly ashes (FA) contents as well as fifteen alkali activated binders (AAB) combinations were considered. Fresh consistency, density, compressive strength (CS) tests and life cycle analysis were carried out to state the ability of these different hydraulic and alkaline activated binders for the CEM I substitution. The results obtained demonstrated the technical and environmental convenience of these binders for the construction mortars manufacturing.Publication Open Access Sustainable unfired bricks manufacturing from construction and demolition wastes(Elsevier, 2018) Seco Meneses, Andrés; Omer, Joshua; Marcelino Sádaba, Sara; Espuelas Zuazu, Sandra; Prieto Cobo, Eduardo; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta ProiektuakThe management of construction and demolition wastes is a huge challenge for most Governments. Thegreatest component of such wastes is concrete and masonry fragments or remains. Among the most com-mon approaches to valorization of such w astes is to convert them to recycled aggregates, however thismay be hampered by low quality of some recycled aggregates compared to natural aggregates. This paperpresents the results of experimental investigation where concrete and ceramic remains were used to par-tially substitute clay soil in producing unfired bricks. The bricks were then tested for mechanical strength,water absorption freeze-thaw resistance. Additionally the environmental impact of the bricks wasassessed based on Life Cycle Analysis (LCA). It was established that concrete waste could be used to sub-stitute up to 50% of the clay whereas ceramic wastes could only substitute a maximum of 30% of the clay.Blended bricks made from clay and concrete waste mixes had a lower mechanical strength than thosemade from clay and ceramic waste. As regards water absorption, there was no marked differencebetween the two blends of brick however reduction in water resistance was slightly greater in bricks con-taining concrete waste that in those containing ceramic wastes. Also, tests showed that freeze-thawresistance was greater in bricks blended with concrete wastes than in those incorporating ceramicwastes. Life Cycle analyses demonstrated that it is the binder content in the mix that largely determinesthe environmental impact of the blended bricks. Lastly, it was demonstrated that the most desirable tech-nical and environmental credentials of brick material mixes resulted from using the binder combination:CL-90-S+GGBS 2/8.Publication Open Access Challenges in Life Cycle Assessment (LCA) of stabilised clay-based construction materials(Elsevier, 2017) Marcelino Sádaba, Sara; Kinuthia, John; Oti, Jonathan; Seco Meneses, Andrés; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta ProiektuakThe preference of clay-based materials for sustainable construction is well-established. The establishment ofsustainability credentials of emergent construction materials is very subjective, and most available tools are notfully equipped to deal with individual material systems, such as composite cement- or lime-based cementitioussystems, including clay-based blocks and bricks. The main problem emanates from the challenges of the audit ofeach aspect of the material processing, and especially the quantification of the most relevant inputs into thecomposite product. The variability in material ingredients, and lack of data for each aspect of the manufacturingprocesses involved creates major challenges. Incorporation of materials with long and complex recyclingprocesses further exacerbate the challenge. These incorporations create problems in terms of accurate materialtrails and data for input in a robust Life Cycle Assessment (LCA) of individual products. This paper reports on asimplified approach towards full LCA of seven clay-based brick products developed in UK (4) and Spain (3), based on known material data and estimated energy inputs in the manufacturing processes. The UK-based brickscomprise of Lower Oxford Clay (LOC), stabilised using combinations of hydrated lime, Ground Granulated Blast-furnace Slag (GGBS) and Portland cement (PC). In order to test the robustness of the proposed approach, resultson UK-based bricks are compared with a parallel LCA on clay-based product developed in Spain. Finally, theclay-based products are compared with a typical Portland cement-based concrete block andfired clay brick. Inthe LCA, boundary conditions includefixed transport, thus attempting to factor only the material ingredients,their known atmospheric emissions, and estimated energy inputs during processing. Results suggest that themost challenging aspect in the undertaking of LCA is the availability of reliable input data. Results also show thatthere are numerous parameters that can reliably and corroboratively facilitate the comparison of performance, besides carbon dioxide emissions.