Person:
Arrese-Igor Sánchez, César

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Arrese-Igor Sánchez

First Name

César

person.page.departamento

Ciencias

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

ORCID

0000-0002-2195-4458

person.page.upna

48

Name

Search Results

Now showing 1 - 1 of 1
  • PublicationOpen Access
    Unravelling the mechanisms that improve photosynthetic performance of N₂-fixing pea plants exposed to elevated [CO₂]
    (Elsevier, 2014) Aranjuelo Michelena, Iker; Cabrerizo Geijo, Pablo María; Aparicio Tejo, Pedro María; Arrese-Igor Sánchez, César; Natura Ingurunearen Zientziak; Ciencias del Medio Natural; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Although the predicted enhanced photosynthetic rates of plants exposed to elevated [CO₂] are expected to increase carbohydrate and plant growth, recent findings have shown a complex regulation of these processes. The aim of this study was to determine the effect of elevated [CO₂] on pathways leading to the main forms of leaf C storage (starch) and export (sucrose) and the implications of this increased [CO₂] on photosynthetic performance of exclusively N2 fixing plants. For this purpose, exclusively N2-fixing pea plants were exposed to elevated [CO₂] (1000 mol mol−1 versus 360 mol mol−1 CO₂). The data obtained highlighted that plants exposed to elevated [CO₂] were capable of maintaining hexose levels (involved in Rubisco down regulation) at control levels with the consequent avoidance of photosynthetic acclimation. More specifically, in plants exposed to elevated [CO₂] there was an increase in the activity of pathways involved in the main forms of leaf C storage (starch) and export (sucrose). Furthermore, the study highlighted that although starch content increased by up to 40% under elevated [CO₂], there was also an increase in the proteins and compounds involved in starch degradation. Such a finding, together with an increase in the activity of proteins involved in sucrose synthesis revealed that these plants up-regulated the sucrose synthesis pathway in order to meet the large nodule photoassimilate requirements. As a consequence, the study highlighted the relevance of controlling the activity of pathways that determine leaf cellular carbohydrate availability and how this is linked with C-demanding organs such as nodules.