Poveda Arias, Jorge

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Poveda Arias

First Name

Jorge

person.page.departamento

Agronomía, Biotecnología y Alimentación

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Deciphering plant health status: the link between secondary metabolites, fungal community and disease incidence in olive tree
    (Frontiers Media, 2023) Gomes, Teresa; Pereira, José Alberto; Moya-Laraño, Jordi; Poveda Arias, Jorge; Lino-Neto, Teresa; Baptista, Paula; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Plant-associated microorganisms are increasingly recognized to play key roles in host health. Among several strategies, associated microorganisms can promote the production of specific metabolites by their hosts. However, there is still a huge gap in the understanding of such mechanisms in plant-microorganism interaction. Here, we want to determine whether different levels of olive leaf spot (OLS) disease incidence were related to differences in the composition of fungal and secondary metabolites (i.e. phenolic and volatile compounds) in leaves from olive tree cultivars with contrasting OLS susceptibilities (ranging from tolerant to highly susceptible). Accordingly, leaves with three levels of OLS incidence from both cultivars were used to assess epiphytic and endophytic fungal communities, by barcoding of cultivable isolates, as well as to evaluate leaf phenolic and volatile composition. Fungal and metabolite compositions variations were detected according to the level of disease incidence. Changes were particularly noticed for OLS-tolerant cultivars, opposing to OLS-susceptible cultivars, suggesting that disease development is linked, not only to leaf fungal and metabolite composition, but also to host genotype. A set of metabolites/fungi that can act as predictive biomarkers of plant tolerance/susceptibility to OLS disease were identified. The metabolites ¿-farnesene and p-cymene, and the fungi Fusarium sp. and Alternaria sp. were more related to disease incidence, while Pyronema domesticum was related to the absence of disease symptoms. Cultivar susceptibility to OLS disease is then suggested to be driven by fungi, volatile and phenolic host leaves composition, and above all to plant-fungus interaction. A deeper understanding of these complex interactions may unravel plant defensive responses.
  • PublicationOpen Access
    Filamentous fungi as biocontrol agents in olive (Olea europaea L.) diseases: mycorrhizal and endophytic fungi
    (Elsevier, 2021) Poveda Arias, Jorge; Baptista, Paula; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Olive (Olea europaea) is a crop of great agronomic, economic and cultural interest for the Mediterranean Basin, although the increase in world demand for olive oil is expanding its cultivation by other countries in the southern hemisphere. The main olive pathogens include bacteria (Pseudomonas savastanoi pv. savastanoi, Xylella fastidiosa), fungi (Colletotrichum spp., Verticillium dahliae, Fusarium spp. Rhizoctonia solani), oomycetes (Phytophthora spp.) and nematodes (Meloidogyne spp.). To combat these pathogens, different biocontrol strategies have been developed with bacteria and yeasts, although its capacity for establishment in the field entails several difficulties. In this sense, filamentous fungi represent an efficient and effective alternative in the control of the different pathogens of the olive tree. The present review compiles all the studies existing so far in the biocontrol of these pathogens through the use of mycorrhizal and endophytic filamentous fungi, making a separate section for the genus Trichoderma due to the special interest that their use has generated. The mechanisms used by these fungi include competition for space and nutrients, parasitism, antibiosis or activation of the plant's defensive responses, among others.
  • PublicationOpen Access
    Editorial: Beneficial effects of fungal endophytes in major agricultural crops
    (Frontiers Media, 2022) Poveda Arias, Jorge; Baptista, Paula; Sacristán, Soledad; Velasco, Pablo; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Endophytic microorganisms are those that can dwell within plant tissues without any external sign of infection or other harmful effects on the host plants (Burragoni and Jeon, 2021). In recent decades, the important role that both bacterial and fungal endophytes play in plant growth and development, as well as in their ability to survive in their environment, has been identified (Burragoni and Jeon, 2021). Endophytic fungi can be found colonizing any plant organ, presenting a very different distribution and diversity among plants of different species, among plants of the same species, and even among organs of the same plant (Aamir et al., 2020). In crops, endophytic fungi act through different beneficial pathways, as biofertilizers promoting plant growth, as biological control agents of pathogens and pests or as inducers of tolerance under abiotic stresses, having great importance in the development of new strategies for sustainable agriculture (Aamir et al., 2020). These benefits for crops have been studied in the papers published in this Research Topic: promotion of plant growth in tomato (Paradza et al.), cotton (Silva et al.) and wheat (Asim et al.), increased tolerance under salt stress in tritordeum and perennial ryegrass (Toghueo et al.), as biological control agents against pathogenic fungi through antibiosis and mycoparasitism (Silva et al.), or as insecticidal agents through activation of systemic plant defenses (Paradza et al.; Agbessenou et al.), among others.