Poveda Arias, Jorge
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Poveda Arias
First Name
Jorge
person.page.departamento
Agronomía, Biotecnología y Alimentación
person.page.instituteName
IMAB. Research Institute for Multidisciplinary Applied Biology
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
25 results
Search Results
Now showing 1 - 10 of 25
Publication Open Access Agronomic and metabolomic side-effects of a divergent selection for indol-3-ylmethylglucosinolate content in kale (Brassica oleracea var. acephala)(MDPI, 2021) Poveda Arias, Jorge; Velasco, Pablo; Haro, Antonio de; Johansen, Tor J.; McAlvay, Alex C.; Möllers, Christian; Mølmann, Jorgen A.B.; Ordiales, Elena; Rodríguez, Víctor Manuel; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta ElikaduraBrassica oleracea var. acephala (kale) is a cruciferous vegetable widely cultivated for its leaves and flower buds in Europe and a food of global interest as a 'superfood'. Brassica crops accumulate phytochemicals called glucosinolates (GSLs) which play an important role in plant defense against biotic stresses. Studies carried out to date suggest that GSLs may have a role in the adaptation of plants to different environments, but direct evidence is lacking. We grew two kale populations divergently selected for high and low indol-3-ylmethylGSL (IM) content (H-IM and L-IM, respectively) in different environments and analyzed agronomic parameters, GSL profiles and metabolomic profile. We found a significant increase in fresh and dry foliar weight in H-IM kale populations compared to L-IM in addition to a greater accumulation of total GSLs, indole GSLs and, specifically, IM and 1-methoxyindol-3-ylmethylGSL (1MeOIM). Metabolomic analysis revealed a significant different concentration of 44 metabolites in H-IM kale populations compared to L-IM. According to tentative peak identification from MS interpretation, 80% were phenolics, including flavonoids (kaempferol, quercetin and anthocyanin derivates, including acyl flavonoids), chlorogenic acids (esters of hydroxycinnamic acids and quinic acid), hydroxycinnamic acids (ferulic acid and p-coumaric acid) and coumarins. H-IM kale populations could be more tolerant to diverse environmental conditions, possibly due to GSLs and the associated metabolites with predicted antioxidant potential.Publication Open Access Beneficial effects of microbial volatile organic compounds (MVOCs) in plants(Elsevier, 2021) Poveda Arias, Jorge; Institute for Multidisciplinary Research in Applied Biology - IMABVolatile organic compounds (VOCs) are chemical compounds whose saturation vapor pressures are greater than 102 kPa at 25 °C. Both plants and microorganisms produce VOCs that allow them to communicate intra- and inter-specifically. By emitting VOCs, plants defend themselves against herbivores and pathogens, warn their neighbors of the attack, compete with other plants, and/or feed microbial populations. Microorganisms emit VOCs to communicate or attack each other. Microbial VOCs (MVOCs) can be of great benefit to plants and their use in agriculture thanks to their ability to inhibit the growth and development of plant pathogens, induce the activation of plant defenses, or promote plant growth and development. In recent years, advances in understanding the importance of microbial volatilome have placed MVOCs as important biotechnological resources in plant production systems.Publication Open Access Broccoli (Brassica oleracea var. italica) biomass as a resource for obtaining glucosinolate extracts to control postharvest fungal diseases(Springer, 2025-05-27) Eugui Arrizabalaga, Daniel; Fernández San Millán, Alicia; Velasco, Pablo; Veramendi Charola, Jon; Rodríguez, Víctor Manuel; Poveda Arias, Jorge; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMABBroccoli (Brassica oleracea var. italica) is a crop of great agronomic and economic importance worldwide. Because its edible parts are the inflorescences, large quantities of non-commercial biomass are produced each year in the field and in the food industry. In order to develop a circular economy around the broccoli crop, the present work develops glucosinolates (GSL) extracts with antimicrobial capacity for postharvest use in tomato, apple and table white grape against fungal diseases produced by the pathogens Botrytis cinerea, Alternaria alternata and Penicillium expansum. GSL extracts from organic crop management reported a higher content of GSLs than conventional management. These extracts are not effective in the control of A. alternata and P. expansum, possibly due to the absence of sinigrin. Furthermore, the extracts were ineffective in the control of B. cinerea on table white grapes, possibly due to the non-climacteric fruit condition and an absence in the induction of ethylene-mediated plant defenses. However, intact GSL extracts were effective in controlling B. cinerea on apple, while the addition of myrosinase enzyme caused effectiveness also on tomato and apple. Therefore, obtaining GSL extracts with biopesticidal capacity against B. cinerea in postharvest could be a circular economy strategy for broccoli agriculture and industry.Publication Open Access Trichoderma as biocontrol agent against pests: new uses for a mycoparasite(Elsevier, 2021) Poveda Arias, Jorge; Institute for Multidisciplinary Research in Applied Biology - IMABInsects are the main pest in agricultural systems, causing significant losses in crop productivity and storage. During the last decades the control of pest insects has been carried out through the uncontrolled and massive use of chemical insecticides, very harmful to the environment and health, which requires the development of new efficient and safe alternatives. Numerous fungal species have been described as entomopathogens of insect pests, as well as plant endophytic fungi. In this sense, Trichoderma is a genus of filamentous fungi widely studied and used as a biocontrol agent in agriculture on pathogenic fungi due to its ability to parasitize them (mycoparasitism), among other mechanisms of action. In recent years, the possibility of using Trichoderma as a biocontrol agent for insect pest has been considered, both directly and indirectly. The studies carried out to date have reported that Trichoderma is capable of controlling insect pest directly through parasitism and the production of insecticidal secondary metabolites, antifeedant compounds and repellent metabolites. And indirectly through the activation of systemic plant defensive responses, the attraction of natural enemies or the parasitism of insectsymbiotic microorganisms. Therefore, the use of Trichoderma in agriculture is not only effective against plant pathogens, but also against insect pests, representing a future alternative in the development of sustainable agriculture.Publication Open Access Deciphering plant health status: the link between secondary metabolites, fungal community and disease incidence in olive tree(Frontiers Media, 2023) Gomes, Teresa; Pereira, José Alberto; Moya-Laraño, Jordi; Poveda Arias, Jorge; Lino-Neto, Teresa; Baptista, Paula; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaPlant-associated microorganisms are increasingly recognized to play key roles in host health. Among several strategies, associated microorganisms can promote the production of specific metabolites by their hosts. However, there is still a huge gap in the understanding of such mechanisms in plant-microorganism interaction. Here, we want to determine whether different levels of olive leaf spot (OLS) disease incidence were related to differences in the composition of fungal and secondary metabolites (i.e. phenolic and volatile compounds) in leaves from olive tree cultivars with contrasting OLS susceptibilities (ranging from tolerant to highly susceptible). Accordingly, leaves with three levels of OLS incidence from both cultivars were used to assess epiphytic and endophytic fungal communities, by barcoding of cultivable isolates, as well as to evaluate leaf phenolic and volatile composition. Fungal and metabolite compositions variations were detected according to the level of disease incidence. Changes were particularly noticed for OLS-tolerant cultivars, opposing to OLS-susceptible cultivars, suggesting that disease development is linked, not only to leaf fungal and metabolite composition, but also to host genotype. A set of metabolites/fungi that can act as predictive biomarkers of plant tolerance/susceptibility to OLS disease were identified. The metabolites ¿-farnesene and p-cymene, and the fungi Fusarium sp. and Alternaria sp. were more related to disease incidence, while Pyronema domesticum was related to the absence of disease symptoms. Cultivar susceptibility to OLS disease is then suggested to be driven by fungi, volatile and phenolic host leaves composition, and above all to plant-fungus interaction. A deeper understanding of these complex interactions may unravel plant defensive responses.Publication Open Access Mechanisms involved in drought stress tolerance triggered by rhizobia strains in wheat(Frontiers Media, 2022) Barquero, Marcia; Poveda Arias, Jorge; Laureano Marín, Ana M.; Ortiz Liébana, Noemí; Brañas, Javier; González Andrés, Fernando; Institute for Multidisciplinary Research in Applied Biology - IMABRhizobium spp. is a well-known microbial plant biostimulant in non-legume crops, but little is known about the mechanisms by which rhizobia enhance crop productivity under drought stress. This work analyzed the mechanisms involved in drought stress alleviation exerted by Rhizobium leguminosarum strains in wheat plants under water shortage conditions. Two (LBM1210 and LET4910) of the four R. leguminosarum strains significantly improved the growth parameters (fresh and dry aerial weight, FW and DW, respectively), chlorophyll content, and relative water content (RWC) compared to a non-inoculated control under water stress, providing values similar to or even higher for FW (+4%) and RWC (+2.3%) than the non-inoculated and non-stressed control. Some other biochemical parameters and gene expression explain the observed drought stress alleviation, namely the reduction of MDA, H2O2 (stronger when inoculating with LET4910), and ABA content (stronger when inoculating with LBM1210). In agreement with these results, inoculation with LET4910 downregulated DREB2 and CAT1 genes in plants under water deficiency and upregulated the CYP707A1 gene, while inoculation with LBM1210 strongly upregulated the CYP707A1 gene, which encodes an ABA catabolic enzyme. Conversely, from our results, ethylene metabolism did not seem to be involved in the alleviation of drought stress exerted by the two strains, as the expression of the CTR1 gene was very similar in all treatments and controls. The obtained results regarding the effect of the analyzed strains in alleviating drought stress are very relevant in the present situation of climate change, which negatively influences agricultural production.Publication Open Access Effect of volatile and non-volatile metabolites from Leptosphaeria maculans on tomato calli under abiotic stresses(Global Science Books, 2022) Poveda Arias, Jorge; Institute for Multidisciplinary Research in Applied Biology - IMABDrought and salinity can be serious problems for agricultural productivity in certain planet areas. Leptosphaeria maculans is the causative agent of the blackleg in crucifer plants. In this work, a novel methodology for studying the effects of fungal metabolites (volatile and non-volatile) on plant calli in the presence of abiotic stresses is presented, by using L. maculans, tomato calli, and drought and salinity stresses. In this way, this study has reported how, under salinity and drought stresses, the growth and vitality of tomato calli is inhibited, increasing its tissues-oxidation and accumulation of ROS. By applying metabolites from L. maculans, the growth of calli treated with non-volatile metabolites showed and increment under salinity and drought conditions. On the other hand, calli treated with volatile metabolites showed an increment in tissues-vitality under salinity and drought conditions. A series of gene expression analysis was also conducted in order to determine the performance of related genes. Results of this study showed that growth related gene expression was induced, together with abiotic stress tolerance gene in response to abscisic acid, AREB1. In addition, the application of volatile metabolites from L. maculans on tomato calli without abiotic stresses increases its growth and vitality, and reduces its oxidation and accumulation of ROS, in accordance with the results of gene expression obtained. The ability of L. maculans metabolites to increase plant tolerance to abiotic stresses could be related to their ability to produce volatile and non-volatile-metabolites, which induce the antioxidant enzyme activity or accumulation of antioxidant compounds, or their ability to increase the expression of ABA-dependent response genes to abiotic stresses.Publication Open Access The Pbo cluster from Pseudomonas syringae pv. phaseolicola NPS3121 is thermoregulated and required for phaseolotoxin biosynthesis(MDPI, 2021) Guardado-Valdivia, Lizeth; Chacón-López, Alejandra; Murillo Martínez, Jesús; Poveda Arias, Jorge; Hernández Flores, José Luis; Xoca-Orozco, Luis; Aguilera, Selene; Institute for Multidisciplinary Research in Applied Biology - IMABThe bean (Phaseolus vulgaris) pathogen Pseudomonas syringae pv. phaseolicola NPS3121 synthe-sizes phaseolotoxin in a thermoregulated way, with optimum production at 18 °C. Gene PSPPH_4550 was previously shown to be thermoregulated and required for phaseolotoxin bio-synthesis. Here, we established that PSPPH_4550 is part of a cluster of 16 genes, the Pbo cluster, included in a genomic island with a limited distribution in P. syringae and unrelated to the posses-sion of the phaseolotoxin biosynthesis cluster. We identified typical non-ribosomal peptide syn-thetase, and polyketide synthetase domains in several of the pbo deduced products. RT-PCR and the analysis of polar mutants showed that the Pbo cluster is organized in four transcriptional units, including one monocistronic and three polycistronic. Operons pboA and pboO are both es-sential for phaseolotoxin biosynthesis, while pboK and pboJ only influence the amount of toxin produced. The three polycistronic units were transcribed at high levels at 18 °C but not at 28 °C, whereas gene pboJ was constitutively expressed. Together, our data suggest that the Pbo cluster synthesizes secondary metabolite(s), which could participate in the regulation of phaseolotoxin biosynthesis.Publication Open Access Combined use of Trichoderma and beneficial bacteria (mainly Bacillus and Pseudomonas): development of microbial synergistic bio-inoculants in sustainable agriculture(Elsevier, 2022) Poveda Arias, Jorge; Eugui Arrizabalaga, Daniel; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta ElikaduraAgriculture nowadays is facing many challenges, with among the most important to be able to feed the increasing human population through more sustainable and environmentally friendly production. In this context, the use of microorganisms has been extensively studied, both with fungi such as Trichoderma spp. and with bacteria, such as Bacillus spp. or Pseudomonas spp. While inoculation with these microorganisms has a positive effect on crops, their combination offers even greater potential as plant growth promoters and as biocontrol agents, with diverse mechanisms that are thoroughly considered in this review. Synergies between Trichoderma and bacteria cause more benefits than the sum of their parts, and this makes them a promising alternative for managing crops and controlling diseases or pests in modern agriculture. However, more studies are needed to determine the specific mechanisms of this synergistic effect in certain lines of research, since there is extensive data about their use as plant growth promoters or biocontrol agents against diseases and certain pests, but little or no information is available about their use against diseases caused by viruses or the effect on plant tolerance to abiotic stresses.Publication Open Access Glucosinolates as an effective tool in plant-parasitic nematodes control: exploiting natural plant defenses(Elsevier, 2022) Eugui Arrizabalaga, Daniel; Escobar, Carolina; Velasco, Pablo; Poveda Arias, Jorge; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB; Agronomía, Biotecnología y AlimentaciónPlant-parasitic nematodes (PPNs) are an important damaging biotic agent for numerous crops around the world, causing serious losses directly and indirectly. Cultural and chemical control strategies were mainly used to PPNs management. However, the choice of chemical nematicides is strictly limited in the agrosystems due to their toxicity, their impact to the environment and, therefore, banning policies. The main lines of action of biological control strategies for nematode control, are based on the development of antagonist microorganism formulations and the use of plant extracts with nematicidal potential. There are many plant secondary metabolites with effective nematicidal potential. In this sense, glucosinolates (GSLs) and, especially, glucosinolate hydrolysis products (GHPs) show relevant nematicidal activity. The effects through which these compounds control nematodes, both direct and indirect are diverse, such as toxicity, anti-hatching effect or promotion of competing saprophytic nematodes or nematophagous bacteria populations. The present work compiles many of the studies that describe the use of GSLs and GHPs as nematicides in agriculture, through very diverse strategies that range from crop rotation with Brassicales to the direct application of GSLs and GHPs to the soil. The authors present GSLs and GHPs as a more sustainable and suitable alternative in nematode control, remarking the need to further research in the modes of action and the impact on environment.
- «
- 1 (current)
- 2
- 3
- »