Poveda Arias, Jorge

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Poveda Arias

First Name

Jorge

person.page.departamento

Agronomía, Biotecnología y Alimentación

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Broccoli (Brassica oleracea var. italica) biomass as a resource for obtaining glucosinolate extracts to control postharvest fungal diseases
    (Springer, 2025-05-27) Eugui Arrizabalaga, Daniel; Fernández San Millán, Alicia; Velasco, Pablo; Veramendi Charola, Jon; Rodríguez, Víctor Manuel; Poveda Arias, Jorge; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Broccoli (Brassica oleracea var. italica) is a crop of great agronomic and economic importance worldwide. Because its edible parts are the inflorescences, large quantities of non-commercial biomass are produced each year in the field and in the food industry. In order to develop a circular economy around the broccoli crop, the present work develops glucosinolates (GSL) extracts with antimicrobial capacity for postharvest use in tomato, apple and table white grape against fungal diseases produced by the pathogens Botrytis cinerea, Alternaria alternata and Penicillium expansum. GSL extracts from organic crop management reported a higher content of GSLs than conventional management. These extracts are not effective in the control of A. alternata and P. expansum, possibly due to the absence of sinigrin. Furthermore, the extracts were ineffective in the control of B. cinerea on table white grapes, possibly due to the non-climacteric fruit condition and an absence in the induction of ethylene-mediated plant defenses. However, intact GSL extracts were effective in controlling B. cinerea on apple, while the addition of myrosinase enzyme caused effectiveness also on tomato and apple. Therefore, obtaining GSL extracts with biopesticidal capacity against B. cinerea in postharvest could be a circular economy strategy for broccoli agriculture and industry.
  • PublicationOpen Access
    Activation of sweet pepper defense responses by novel and known biocontrol agents of the genus Bacillus against Botrytis cinerea and Verticillium dahliae
    (Springer, 2022) Poveda Arias, Jorge; Calvo, Javier; Barquero, Marcia; González Andrés, Fernando; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The Fresno-Benavente Pepper (F-BP) Protected Geographical Indication (PGI) is a horticultural crop characterized by its great agronomic, economic and cultural importance in the region of Castilla y León (Spain). Field production is threatened by verticillium wilt caused by Verticillium dahliae and postharvest losses due to grey mould caused by Botrytis cinerea. Eight Bacillus spp. strains endophytically isolated from F-BP roots were used in the study. By conducting an in vitro antagonism study, we found that all Bacillus strains were effective against B. cinerea and five of them showed high antagonism against V. dahliae, with B. siamensis and B. proteolyticus strains being the most effective against both pathogens. Eight Bacillus strains were used for an infection test in F-BP fruits and plants to test their activity against both fungal pathogens. We report that Bacillus thuringiensis, B. siamensis and B. pumilus (SCFC 1–2) could control B. cinerea in pepper fruits through direct action and local activation of plant defences. In the case of V. dahliae root infection, plant roots inoculated with B. siamensis and B. proteolyticus were able to significantly decrease the occurrence of disease through direct action and local activation of jasmonic acid as a defence response. Therefore, we propose that B. siamensis could be used to control B. cinerea and V. dahliae in F-BP fruits and plants, respectively, through direct antagonism as well as the induction of local plant defence responses.
  • PublicationOpen Access
    Control of postharvest diseases in berries through edible coatings and bacterial probiotics
    (Elsevier, 2022) Romero, Janira; Albertos, Irene; Díez Méndez, Alexandra; Poveda Arias, Jorge; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The world's population is growing, which requires more resources, including food. Some necessary foods, such as berries, are very perishable fresh products that suffer contamination by pathogens, generating great economic losses. Various physical and chemical strategies have been used to mitigate these losses over the years, including the use of pesticides. However, the negative impact on the environment and human health of these chemical products has aroused interest in the development of other control methods. Biocontrol is one of these innovative strategies, in which various biological control agents can be used, including bacteria probiotics. Probiotics act as antagonists of fungal pathogens by competition for space and nutrients, production of secondary metabolites, such as volatile organic compounds (VOCs), lytic enzymes, and activation of plant defenses. On the other hand, there are materials in which protection against pathogens has been seen, such as edible coatings, since they have components, such as chitosan, with antimicrobial properties. In addition, probiotics can be used in conjunction with other elements such as edible coatings, resulting from a new control strategy against post-harvest diseases. This review compiles studies that use probiotics and/or edible coatings as a method of reducing post-harvest diseases, specifically, in berries.