Poveda Arias, Jorge

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Poveda Arias

First Name

Jorge

person.page.departamento

Agronomía, Biotecnología y Alimentación

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Glucosinolates as an effective tool in plant-parasitic nematodes control: exploiting natural plant defenses
    (Elsevier, 2022) Eugui Arrizabalaga, Daniel; Escobar, Carolina; Velasco, Pablo; Poveda Arias, Jorge; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB; Agronomía, Biotecnología y Alimentación
    Plant-parasitic nematodes (PPNs) are an important damaging biotic agent for numerous crops around the world, causing serious losses directly and indirectly. Cultural and chemical control strategies were mainly used to PPNs management. However, the choice of chemical nematicides is strictly limited in the agrosystems due to their toxicity, their impact to the environment and, therefore, banning policies. The main lines of action of biological control strategies for nematode control, are based on the development of antagonist microorganism formulations and the use of plant extracts with nematicidal potential. There are many plant secondary metabolites with effective nematicidal potential. In this sense, glucosinolates (GSLs) and, especially, glucosinolate hydrolysis products (GHPs) show relevant nematicidal activity. The effects through which these compounds control nematodes, both direct and indirect are diverse, such as toxicity, anti-hatching effect or promotion of competing saprophytic nematodes or nematophagous bacteria populations. The present work compiles many of the studies that describe the use of GSLs and GHPs as nematicides in agriculture, through very diverse strategies that range from crop rotation with Brassicales to the direct application of GSLs and GHPs to the soil. The authors present GSLs and GHPs as a more sustainable and suitable alternative in nematode control, remarking the need to further research in the modes of action and the impact on environment.
  • PublicationOpen Access
    Editorial: Beneficial effects of fungal endophytes in major agricultural crops
    (Frontiers Media, 2022) Poveda Arias, Jorge; Baptista, Paula; Sacristán, Soledad; Velasco, Pablo; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Endophytic microorganisms are those that can dwell within plant tissues without any external sign of infection or other harmful effects on the host plants (Burragoni and Jeon, 2021). In recent decades, the important role that both bacterial and fungal endophytes play in plant growth and development, as well as in their ability to survive in their environment, has been identified (Burragoni and Jeon, 2021). Endophytic fungi can be found colonizing any plant organ, presenting a very different distribution and diversity among plants of different species, among plants of the same species, and even among organs of the same plant (Aamir et al., 2020). In crops, endophytic fungi act through different beneficial pathways, as biofertilizers promoting plant growth, as biological control agents of pathogens and pests or as inducers of tolerance under abiotic stresses, having great importance in the development of new strategies for sustainable agriculture (Aamir et al., 2020). These benefits for crops have been studied in the papers published in this Research Topic: promotion of plant growth in tomato (Paradza et al.), cotton (Silva et al.) and wheat (Asim et al.), increased tolerance under salt stress in tritordeum and perennial ryegrass (Toghueo et al.), as biological control agents against pathogenic fungi through antibiosis and mycoparasitism (Silva et al.), or as insecticidal agents through activation of systemic plant defenses (Paradza et al.; Agbessenou et al.), among others.
  • PublicationOpen Access
    Glucosinolate-extracts from residues of conventional and organic cultivated broccoli leaves (brassica oleracea var. italica) as potential industrially-scalable efficient biopesticides against fungi, oomycetes and plant parasitic nematodes
    (Elsevier, 2023) Eugui Arrizabalaga, Daniel; Velasco, Pablo; Abril Urías, Patricia; Escobar, Carolina; Gómez-Torres, Óscar; Caballero, Sara; Poveda Arias, Jorge; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura
    This study aimed to standarize a protocol for obtaining a bioactive extract from broccoli (Brassica oleracea var. italica) crop residues, that is suitable for application on an industrial scale and effective in reducing plant disease incidence. For this purpose, the influence of several extraction factors in the glucosinolate (GSL) content was studied with leaves collected from two conventional broccoli fields and two organic broccoli fields. The analysis showed that lyophilization had no influence on the GSL content. Storage of plant material under two different temperatures (− 20ºC and − 80ºC) had no influence on the GSLs content of the extracts. Phytotoxicity of the extracts was studied with six different plant seeds, and also cytotoxicity was determined with human liver cells in vitro. The extracts were phytotoxic at dilutions above 10%, while cell toxicity was low. Extracts concentrations of 0.1%, 1% and 2% were tested in vitro against eight plant pathogenic fungi and two oomycetes in solid and in liquid media. The extracts reduced the growth of several plant pathogenic fungi at 2% dilution by up to 38.37% against Alternaria alternata and up to 46.55% against Sclerotinia sclerotiorum. When combined with myrosinase enzyme the effect of the extracts was enhanced, reaching inhibition values of 67.06% against A. alternata in solid medium and 68.52% against Rhizoctonia solani in liquid medium. In contrast, the same extracts increased the growth of the plant pathogenic oomycetes Pythium ultimum and Phytophthora cactorum. The effect of the same extracts in the free leaving larvae, J2s, of the plant-parasitic nematode (PPN) Meloidogyne javanica was not obvious. Minor significant differences were obtained but with no clear dose-response in nematode mortality, and no inhibition of eggs hatching was observed. These results show the industrial potential of using broccoli residues to obtain extracts with biopesticide activity against plant pathogenic fungi.