Klaina, Hicham

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Klaina

First Name

Hicham

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 17
  • PublicationOpen Access
    Design, assessment and deployment of an efficient golf game dynamics management system based on flexible wireless technologies
    (MDPI, 2023) Picallo Guembe, Imanol; Aguirre Gallego, Erik; López Iturri, Peio; Guembe Zabaleta, Javier; Olariaga Jauregui, Eduardo; Klaina, Hicham; Marcotegui Iturmendi, José Antonio; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    The practice of sports has been steadily evolving, taking advantage of different technological tools to improve different aspects such as individual/collective training, support in match development or enhancement of audience experience. In this work, an in-house implemented monitoring system for golf training and competition is developed, composed of a set of distributed end devices, gateways and routers, connected to a web-based platform for data analysis, extraction and visualization. Extensive wireless channel analysis has been performed, by means of deterministic 3D radio channel estimations and radio frequency measurements, to provide coverage/capacity estimations for the specific use case of golf courses. The monitoring system has been fully designed considering communication as well as energy constraints, including wireless power transfer (WPT) capabilities in order to provide flexible node deployment. System validation has been performed in a real golf course, validating end-to-end connectivity and information handling to improve overall user experience.
  • PublicationOpen Access
    Narrowband characterization of near-ground radio channel for wireless sensors networks at 5G-IoT bands
    (MDPI, 2018) Klaina, Hicham; Aghzout, Otman; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this contribution, a narrowband radio channel model is proposed for rural scenarios in which the radio link operates under near-ground conditions for application in wireless sensor networks dedicated to smart agriculture. The received power attenuation was measured for both transmitter and receiver antennas placed at two different heights above ground: 0.2 and 0.4 m. Three frequency ranges, proposed for future 5G-IoT use case in agriculture, were chosen: 868 MHz, 2.4 GHz and 5.8 GHz. Three ground coverings were tested in a rural scenario: soil, short and tall grass fields. The path loss was then estimated as dependent of the radio link range and a three-slope log-normal path loss model was tailored. Results are explained in terms of the first Fresnel zone obstruction. Commercial Zigbee sensor nodes operating at 2.4 GHz were used in a second experiment to estimate the link quality from the experimental Radio Signal Strength Indicator (RSSI) received values. Two sensor nodes were placed at the same elevation above ground as in the previous experiment, only for short grass field case. The Quality of Service performance was determined in terms of theoretical bit error rate achieved for different digital modulations-BPSK, 8PSK and 16QAM-concluding remarkable results for an obstructed radio link.
  • PublicationOpen Access
    An IoT framework for SDN based city mobility
    (Springer, 2021) Al-Rahamneh, Anas; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Klaina, Hicham; Picallo Guembe, Imanol; López Iturri, Peio; Falcone Lanas, Francisco; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de Comunicación
    The Internet of Things (IoT) is becoming more widespread, with global application in a wide range of commercial sectors, utilizing a variety of technologies for customized use in specific environments. The combinationof applications and protocolsand the unique requirements of each environment present a significant challenge for IoT applications, necessitating communication and message exchange support. This paper presents a proposed SDN-based edge smart bypass/ multiprotocol switching for bicycle networks that supports functionalities of coordination of various wireless transmission protocols. A performance assessment will be presented, addressing a comparison between the different protocols (LoRaWAN vs. Sigfox) in terms radio coverage.
  • PublicationOpen Access
    Wireless characterization and assessment of an UWB-Based system in industrial environments
    (IEEE, 2021) Picallo Guembe, Imanol; López Iturri, Peio; Klaina, Hicham; Glaría Ezker, Guillermo; Sáez de Jaúregui Urdanoz, Félix; Zabalza Cestau, José Luis; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua
    The advent of Indsutrial Internet of Things is one of the main drivers for the implementation of Industry 4.0 scenarios and applications, in which wireless communication systems play a key role in terms of flexibility, mobility and deployment capabilities. However, the integration of wireless communication systems poses challenges, owing to variable path loss conditions and interference impact. In this work, an Ultra-Wideband (UWB) system for indoor location in very large, complex industrial scenarios is presented. Precise wireless channel characterization for the complete volume of a logistical plant is performed, based on 3D hybrid ray launching approximation, in order to aid network node design process. Wireless characterization, implementation and measurement results are obtained for both 4 GHz and 6 GHz frequency bands, considering different densities of scatterers within the scenario under test. Time domain estimation results have been obtained and compared with time of flight measurement results, showing good agreement. The proposed methodology enables to perform system design and performance tasks, analyzing the impact of variable object density conditions in wireless channel response, providing accurate time of flight estimations without the need of complex channel sounder systems, aiding in optimal system planning and implementation.
  • PublicationOpen Access
    IIoT low-cost Zigbee-based WSN implementation for enhanced production efficiency in a solar protection curtains manufacturing workshop
    (MDPI, 2024) Klaina, Hicham; Picallo Guembe, Imanol; López Iturri, Peio; Biurrun, Aitor; Alejos, Ana V.; Azpilicueta Fernández de las Heras, Leyre; Socorro Leránoz, Abián Bentor; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Nowadays, the Industry 4.0 concept and the Industrial Internet of Things (IIoT) are considered essential for the implementation of automated manufacturing processes across various industrial settings. In this regard, wireless sensor networks (WSN) are crucial due to their inherent mobility, easy deployment and maintenance, scalability, and low power consumption, among other benefits. In this context, the presented paper proposes an optimized and low-cost WSN based on ZigBee communication technology for the monitoring of a real manufacturing facility. The company designs and manufactures solar protection curtains and aims to integrate the deployed WSN into the Enterprise Resource Planning (ERP) system in order to optimize their production processes and enhance production efficiency and cost estimation capabilities. To achieve this, radio propagation measurements and 3D ray launching simulations were conducted to characterize the wireless channel behavior and facilitate the development of an optimized WSN system that can operate in the complex industrial environment presented and validated through on-site wireless channel measurements, as well as interference analysis. Then, a low-cost WSN was implemented and deployed to acquire real-time data from different machinery and workstations, which will be integrated into the ERP system. Multiple data streams have been collected and processed from the shop floor of the factory by means of the prototype wireless nodes implemented. This integration will enable the company to optimize its production processes, fabricate products more efficiently, and enhance its cost estimation capabilities. Moreover, the proposed system provides a scalable platform, enabling the integration of new sensors as well as information processing capabilities.
  • PublicationOpen Access
    Implementation of radiating elements for radiofrequency front-ends by screen-printing techniques for Internet of Things applications
    (MDPI, 2019) Picallo Guembe, Imanol; Klaina, Hicham; López Iturri, Peio; Sánchez, Aitor; Méndez Giménez, Leire; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua, 0011-1365-2017-000103
    The advent of the Internet of Things (IoT) has led to embedding wireless transceivers into a wide range of devices, in order to implement context-aware scenarios, in which a massive amount of transceivers is foreseen. In this framework, cost-effective electronic and Radio Frequency (RF) front-end integration is desirable, in order to enable straightforward inclusion of communication capabilities within objects and devices in general. In this work, flexible antenna prototypes, based on screen-printing techniques, with conductive inks on flexible low-cost plastic substrates is proposed. Different parameters such as substrate/ink characteristics are considered, as well as variations in fabrication process or substrate angular deflection in device performance. Simulation and measurement results are presented, as well as system validation results in a real test environment in wireless sensor network communications. The results show the feasibility of using screen-printing antenna elements on flexible low-cost substrates, which can be embedded in a wide array of IoT scenarios.
  • PublicationOpen Access
    Enabling anything to anything connectivity within urban environments towards cognitive frameworks
    (IEEE, 2024-08-23) Picallo Guembe, Imanol; Klaina, Hicham; López Iturri, Peio; Azpilicueta Fernández de las Heras, Leyre; Celaya Echarri, Mikel; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Ciencias; Zientziak; Institute of Smart Cities - ISC
    The evolution from Smart Cities towards Cognitive Cities is enabled, among others, by the use of flexible and adaptive communication systems, capable of providing high levels of interactivity among multiple systems and users. In this work, wireless connectivity in full volumetric scale is analyzed, in order to provide wireless links between any device/user within the scenario, spanning to different applications from vehicular connectivity at different levels or infrastructure related communications, among others.
  • PublicationOpen Access
    Patient tracking in a multi-building, tunnel-connected hospital complex
    (IEEE, 2020) Trigo Vilaseca, Jesús Daniel; Klaina, Hicham; Picallo Guembe, Imanol; López Iturri, Peio; Astrain Escola, José Javier; Falcone Lanas, Francisco; Serrano Arriezu, Luis Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA29
    Patients admitted to Intensive Care Units (ICU) are transported from and to other units. Knowing their location is strategic for a sound planning of intra-hospital transports as well as resources management. This is even more crucial in big hospital complexes, comprised of several buildings often connected through tunnels. In this work, a patient tracking application in a multi-building, tunnel-connected hospital complex (the Hospital Complex of Navarre) is presented. The system leverages Internet of Medical Things (IoMT) communication technologies, such as Long Range Wide-Area Network (LoRaWAN) and Near Field Communication (NFC). The locations of the LoRaWAN nodes were selected based on several factors, including the situation of the tunnels, buildings services and medical equipment and a literature review on intra-hospital ICU patients' trips. The possible locations of the LoRaWAN gateways were selected based on 3D Ray Launching Simulations, in order to obtain accurate characterization. Once the locations were set, a LoRaWAN radio coverage studio was performed. The main conclusion drawn is that just one LoRaWAN gateway would be enough to cover all overground LoRaWAN nodes deployed. A second one would be required for underground coverage. In addition, a remote, private cloud infrastructure together with a mobile application was created to manage the information generated. On-field tests were performed to assess the technical feasibility of the system. The application provides with on-demand ICU patients' movement flow around the complex. Although designed for the ICU-admitted patients' context, the system could be easily extrapolated to other use cases.
  • PublicationOpen Access
    Enabling customizable services for multimodal smart mobility with city-platforms
    (IEEE, 2021) Al-Rahamneh, Anas; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Klaina, Hicham; Picallo Guembe, Imanol; López Iturri, Peio; Falcone Lanas, Francisco; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua
    In the last decades, the cities' capacity for generating digital information has grown exponentially. In this context, the successful implementation of smart cities' concept depends on the current possibility of handling the significant volumes of sensed data. This is particularly notorious in the case of urban mobility. Researchers in the field of urban planning have shown a great interest in urban mobility problems, proposing different route recommendation services towards making it easier and safer to move around the city. This paper addresses the development of an urban data platform and how to obtain and integrate information from sensors and other data sources to provide aggregated and intelligent views of raw data to support urban mobility. With the aim of evaluating the efficiency of the developed platform, we present an intelligent urban mobility solution, where the context-awareness, user preferences, and environmental factors play a significant role in the process of route planning. Finally, our work provides an experiment to assess different long-range wireless communication technologies to enable its implementation within an urban environment.
  • PublicationOpen Access
    A radio channel model for D2D communications blocked by single trees in forest environments
    (MDPI, 2019) Picallo Guembe, Imanol; Klaina, Hicham; López Iturri, Peio; Aguirre Gallego, Erik; Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Eguizábal Garrido, Alejandro; Falcone Lanas, Francisco; Alejos, Ana V.; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    In this paper we consider the D2D (Device-to-Device) communication taking place between Wireless Sensor Networks (WSN) elements operating in vegetation environments in order to achieve the radio channel characterization at 2.4 GHz, focusing on the radio links blocked by oak and pine trees modelled from specimens found in a real recreation area located within forest environments. In order to fit and validate a radio channel model for this type of scenarios, both measurements and simulations by means of an in-house developed 3D Ray Launching algorithm have been performed, offering as outcomes the path loss and multipath information of the scenarios under study for forest immersed isolated trees and non-isolated trees. The specific forests, composed of thick in-leaf trees, are called Orgi Forest and Chandebrito, located respectively in Navarre and Galicia, Spain. A geometrical and dielectric model of the trees were created and introduced in the simulation software. We concluded that the scattering produced by the tree can be divided into two zones with different dominant propagation mechanisms: an obstructed line of sight (OLoS) zone far from the tree fitting a log-distance model, and a diffraction zone around the edge of the tree. 2D planes of delay spread value are also presented which similarly reflects the proposed two-zone model.