Person: Bravo Larrea, Javier
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Bravo Larrea
First Name
Javier
person.page.departamento
Ingeniería Eléctrica y Electrónica
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
5 results
Search Results
Now showing 1 - 5 of 5
Publication Open Access Nanofilms on a hollow core fiber(SPIE, 2006) Matías Maestro, Ignacio; Bravo Larrea, Javier; Arregui San Martín, Francisco Javier; Corres Sanz, Jesús María; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako GobernuaWe experimentally study the behavior of one multimode fiber–hollow core fiber–multimode fiber structure when nanofilms are deposited on it with the aim of developing practical evanescent field-based devices, such as sensors, filters, etc. The electrostatic self-assembly (ESA) method is used as the deposition technique and the chosen polymers are PDDA and Poly R-478 because of their well-known optical properties and their potential application as humidity sensors. Three different types of hollow core, fibers are used for the fabrication of the devices and at two different wavelengths. An oscillatory-decreasing transmitted optical power is obtained as the thickness of the nanofilms is increased.Publication Open Access Simple fabrication of ultrahigh aspect ratio nanostructures for enhanced antireflectivity(American Vacuum Society, 2014) Domínguez Fernández, Sagrario; Cornago Santos, Ignacio; Bravo Larrea, Javier; Pérez Conde, Jesús; Choi, Hyungryul J.; Kim, Jeong-Gil; Barbastathis, George; Física; Fisika; Gobierno de Navarra / Nafarroako Gobernua: 1858/2012In this work, the authors present a novel fabrication process to create periodic nanostructures with aspect ratio as high as 9.6. These nanostructures reduce spectral reflectance of silicon to less than 4% over the broad wavelength region from 200 to 2000nm. At the visible range of the spectrum, from 200 to 650 nm, reflectivity is reduced to less than 0.1%. The aspect ratio and reflectance performance that the authors achieved have never been reported before for ordered tapered nanostructures, to our knowledge.Publication Open Access Photonic crystal fiber temperature sensor based on quantum dot nanocoatings(Hindawi / Wiley, 2009) Larrión Zabaleta, Beatriz; Hernáez Sáenz de Zaitigui, Miguel; Arregui San Martín, Francisco Javier; Goicoechea Fernández, Javier; Bravo Larrea, Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaQuantum dot nanocoatings have been deposited by means of the Layer-by-Layer technique on the inner holes of Photonic Crystal Fibers (PCFs) for the fabrication of temperature sensors. The optical properties of these sensors including absorbance, intensity emission, wavelength of the emission band, and the full width at half maximum (FWHM) have been experimentally studied for a temperature range from -40 to 70ºC.Publication Open Access Quantum dots coatings inside photonic crystal fibers for temperature sensing(IEEE, 2008-12-16) Arigita Lasheras, Jesús; Larrión Zabaleta, Beatriz; Bravo Larrea, Javier; Hernáez Sáenz de Zaitigui, Miguel; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Gobierno de Navarra / Nafarroako GobernuaTemperature sensors based on Quantum Dots (QDs) nanofilms deposited on the inner holes of a Photonic Crystal Fiber (PCF) was created using the layer by layer electrostatic self-assembly method. The structure is based on a PCF fiber segment spliced between two Standard Multimode Fibers (MMF) of different diameters. The sensors showed a linear variation of the intensity and wavelength emission for a temperature range from -20 ºC to 70 ºC.Publication Open Access A new ABS conductive material to develop fully 3D-printed patch antennas(IEEE, 2023) Jiménez Peña, Javier; Irigoyen, Joseba; Aresti Bartolomé, Maite; Ederra Urzainqui, Íñigo; Bravo Larrea, Javier; Iriarte Galarregui, Juan Carlos; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenAdditive manufacturing technology is rapidly overcoming some of its initial limitations and, thus, creating a very useful engineering option for prototyping complex geometries for a wide range of electronic devices. Based on important advantages such as turn-around, reliability, material waste reduction, and low implementation costs, the technology is being continuously developed and improved. This paper presents a completely 3D-printed microstrip patch antenna to demonstrate the feasibility of a new conductive Acrylonitrile Butadiene Styrene (ABS) material in the fabrication of three-dimensional (3D) antennas using additive manufacturing method. The prototype of the antenna has been fabricated using Raise3D E2 printer, commercial ABS and a new ABS filament developed by Naitec for dielectric and conductive parts of the antenna, respectively. The fabricated antenna is compact and light. Preliminary prototypes and fabrication techniques are presented.