Person:
Percaz Ciriza, Jon Mikel

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Percaz Ciriza

First Name

Jon Mikel

person.page.departamento

ORCID

0000-0002-8391-4160

person.page.upna

811079

Name

Search Results

Now showing 1 - 7 of 7
  • PublicationOpen Access
    Design procedure for new compact waffle-iron ilters with transmission zeros
    (IEEE, 2018) Teberio Berdún, Fernando; Percaz Ciriza, Jon Mikel; Arregui Padilla, Iván; Martín Iglesias, Petronilo; Lopetegui Beregaña, José María; Gómez Laso, Miguel Ángel; Arnedo Gil, Israel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this paper, a novel waffle-iron filter with transmission zeros at multiple frequencies, along with its design procedure, is presented. The proposed filter features a high-power behavior and a wide rejected band in a single compact structure by means of a set of transmission zeros that can also be placed close to the passband. Its design method rests on a divide-and-rule strategy, where the physical dimensions of the constituent design entities (DEs) can be easily computed in a very short time. A novel high-power compact waffle-iron filter with transmission zeros at multiple frequencies has been designed as well as several classical waffle-iron filters with transmission zeros at one frequency only, using a detailed step-by-step procedure which avoids the bruteforce optimizations needed until now. Multipactor and corona simulations have been conducted proving a high-power handling capability of 1.8 kW and 78.6 W, respectively. A prototype of the novel filter has been fabricated, obtaining a remarkable accordance between the simulated and measured results.
  • PublicationOpen Access
    High-power filter design in waveguide technology: future generation of waveguide satellite filters in payloads handling increasing bit rates and numbers of channels
    (IEEE, 2020) Arregui Padilla, Iván; Teberio Berdún, Fernando; Arnedo Gil, Israel; Percaz Ciriza, Jon Mikel; Martín Iglesias, Petronilo; Lopetegui Beregaña, José María; Gómez Laso, Miguel Ángel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    To design a filter for a particular application, many issues must first be considered. Which technology will be the most convenient? What design technique will provide better results for a particular set of frequency specifications? Once the device has been designed, will it fulfill all of the (not only electrical) requirements? It is not always easy to answer such questions in advance. In this article, we try to shed some light on these questions when our aim is the design of filters for high-power operation.
  • PublicationOpen Access
    Synthesis of rectangular waveguide filters with smooth profile oriented to direct metal additive manufacturing
    (IEEE, 2023) Percaz Ciriza, Jon Mikel; Hussain, Jabir; Arregui Padilla, Iván; Teberio Berdún, Fernando; Benito Pertusa, David; Martín Iglesias, Petronilo; Arnedo Gil, Israel; Gómez Laso, Miguel Ángel; Lopetegui Beregaña, José María; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this paper, a novel design method for rectangular waveguide filters intended for fabrication using direct metal additive manufacturing is proposed. The synthesized filters will feature a smooth profile that allows us to fabricate them orienting the filter propagation axis in the vertical building direction, achieving an optimum configuration for direct metal additive manufacturing fabrication. The novel design method is valid for any all-pole transfer function, which is initially implemented with a commensurate-line distributed unit element prototype. The impulse response of that initial prototype is then properly interpolated to obtain the target response for a smooth-profiled filter with similar length and profile excursion. Finally, the target impulse response just generated is implemented in rectangular waveguide technology employing a novel inverse scattering synthesis technique that relies on the coupled-mode theory to model the electromagnetic behavior of the waveguide filter. The novel inverse scattering synthesis technique is general and also valid for the case of filters with very high rejection levels, which is of great relevance in rectangular waveguide technology. A Ku-band low-pass filter with stringent satellite specifications is designed using the proposed method, fabricated by means of a direct metal additive manufacturing technique, and measured with a vector network analyzer. A very good agreement is achieved between the simulated and measured results, fulfilling the required specifications and demonstrating the feasibility and performance of the novel design method.
  • PublicationOpen Access
    Metal 3D printing for RF/microwave high-frequency parts
    (Springer, 2022) Martín Iglesias, Petronilo; Gómez Laso, Miguel Ángel; Lopetegui Beregaña, José María; Teberio Berdún, Fernando; Arregui Padilla, Iván; Marechal, M.; Calves, P.; Hazard, M.; Pambaguian, L.; Brandao, A.; Rodríguez Castillo, S.; Martin, T.; Percaz Ciriza, Jon Mikel; Iza, V.; Martín-Iglesias, Santiago; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Space Systems have been historically characterised by high performance, high reliability and high cost. Every new generation of space systems tends to improve performance, keep as much as possible reliability, speeding the lead time and lower the cost. Aggressive approach is nowadays followed by some of the players of the new space ecosystem where, for instance, reli- ability can be relaxed thanks for the in-orbit redundancy or robustness to failures by having a constellation with a high number of satellites. This push towards the technology and system limit requires to investigate new methods for the manufacturing of RF/Microwave parts. RF devices such as those based on waveguide structures, benefit from an additive manufacturing approach in terms of radio frequency (RF) performance and compactness. However each manufacturing approach comes with specific features and limitations which need to be well understood and, in some cases, even taking advantage of them. This paper provides a short review of some of the RF/Microwave parts already manufactured using this technology. The paper will focus mainly on metal 3D printing parts since this technology is, at the moment, well accepted by the space community.
  • PublicationOpen Access
    Rectangular waveguide filters with meandered topology
    (IEEE, 2018) Teberio Berdún, Fernando; Percaz Ciriza, Jon Mikel; Arregui Padilla, Iván; Martín Iglesias, Petronilo; Lopetegui Beregaña, José María; Gómez Laso, Miguel Ángel; Arnedo Gil, Israel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua, 0011-1365-2017-000130
    In this paper, a new topology for rectangular waveguide bandpass and low-pass filters is presented. A simple, accurate, and robust design technique for these novel meandered waveguide filters is provided. The proposed filters employ a concatenation of ±90° E-plane mitered bends (±90° EMBs) with different heights and lengths, whose dimensions are consecutively and independently calculated. Each ±90° EMB satisfies a local target reflection coefficient along the device so that they can be calculated separately. The novel structures allow drastically reduce the total length of the filters and embed bends if desired, or even to provide routing capabilities. Furthermore, the new meandered topology allows the introduction of transmission zeros above the passband of the low-pass filter, which can be controlled by the free parameters of the ±90° EMBs. A bandpass and a low-pass filter with meandered topology have been designed following the proposed novel technique. Measurements of the manufactured prototypes are also included to validate the novel topology and design technique, achieving excellent agreement with the simulation results.
  • PublicationOpen Access
    Routing with classical corrugated waveguide low-pass filters with embedded bends
    (EMW Publishing, 2018) Teberio Berdún, Fernando; Percaz Ciriza, Jon Mikel; Arregui Padilla, Iván; Martín Iglesias, Petronilo; Lopetegui Beregaña, José María; Gómez Laso, Miguel Ángel; Arnedo Gil, Israel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    A very simple design method to embed routing capabilities in classical corrugated filters is presented in this paper. The method is based on the calculation of the heights and lengths of the so-called filters design building blocks, by means of a consecutive and separate extraction of their local reflection coefficients along the device. The proposed technique is proved with a 17th-order Zolotarev filter whose topology is bent twice so that the input and output ports are in the same plane while preserving the in-line filters behaviour. This new filter allows the possibility of eliminating subsequent bending structures, reducing the insertion loss, weight, and PIM.
  • PublicationOpen Access
    General synthesis of tapered matching sections for single mode operation using the coupled-mode theory
    (IEEE, 2019) Percaz Ciriza, Jon Mikel; Arnedo Gil, Israel; Arregui Padilla, Iván; Teberio Berdún, Fernando; Martín Iglesias, Petronilo; Gómez Laso, Miguel Ángel; Lopetegui Beregaña, José María; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this paper, a novel and general method to synthetize microwave waveguide tapers intended for single mode operation is proposed. The technique is based on the use of an exact series solution of the inverse scattering synthesis problem. An additional strategy necessary for dealing with waveguides where the propagation constant varies with the position is included. The coupled-mode theory is employed to model the electromagnetic behavior of the taper with the inherent mismatch caused by the connection of the waveguides with different cross-sections. The novel method allows us to synthesize the (classical) transmission line taper functions of Klopfenstein and Hecken, making them suitable for general waveguide tapers with single mode operation. Additionally, a new type of taper functions, also suitable for general waveguide tapers, is presented. The novel functions are obtained by partially employing the frequency response of multisection transformers, resulting in fully smooth tapers that can offer shorter lengths than the classical proposals. The taper synthesis procedure is demonstrated in rectangular waveguide technology, by requiring realistic and challenging specifications for different cases with different waveguide cross-sections to be matched: height mismatch, width mismatch, and simultaneous height and width mismatch. Several prototypes of Klopfenstein, Hecken and novel function tapers have been fabricated in an aluminum alloy by means of an Additive Manufacturing technique (Direct Metal Laser Sintering). The simulation and measurement results obtained for the rectangular waveguide taper prototypes confirm the accuracy of the novel synthesis technique proposed.