Person:
Benito Amurrio, Marta

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Benito Amurrio

First Name

Marta

person.page.departamento

Ingeniería

person.page.instituteName

ORCID

0000-0002-1966-1154

person.page.upna

1746

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    The integration of mechanical energy absorbers into rollover protective structures to improve the safety of agricultural tractors in the event of rollover
    (MDPI, 2024) Alfaro López, José Ramón; Pérez Ezcurdia, Amaya; Latorre Biel, Juan Ignacio; Arana Navarro, Ignacio; Benito Amurrio, Marta; Villanueva Roldán, Pedro; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA1912
    The combination of safety belts and rollover protective structures (ROPSs) is key in improving the safety of agricultural tractors in the event of rollover. However, we also have the opportunity to enhance the security provided by each ROPS; one such example is the combination of this safety device with adequate mechanical energy absorbers (MEAs). Inexpensive disc-shaped MEAs can be included in the anchoring points of a ROPS onto the chassis of a tractor. Three configurations of ROPS combined with MEAs were tested during the application of loads that simulated the effects of side rollover in the vehicle. The tested configurations included a blank MEA as a reference case alongside a single MEA and a stack assembly containing both elements. The results of the tests show that both the deformation of the ROPS itself and the strain energy are larger in the case of blank MEAs; thus, there is also a risk that the clearance zone will be infringed upon and that the protective structure will collapse. We can conclude that the implementation of an appropriate MEA in ROPS reduces the deformation of the ROPS itself and its strain energy in cases of vehicle rollover; hence, the safety provided by such protection systems may be improved at a low cost.
  • PublicationOpen Access
    Experimental study of the performance and emission characteristics of an adapted commercial four-cylinder spark ignition engine running on hydrogen-methane mixtures
    (Elsevier, 2014) Diéguez Elizondo, Pedro; Urroz Unzueta, José Carlos; Marcelino Sádaba, Sara; Pérez Ezcurdia, Amaya; Benito Amurrio, Marta; Sáinz Casas, David; Gandía Pascual, Luis; Ingeniería; Ingeniaritza
    The use of hydrogen/methane mixtures with low methane contents as fuels for internal combustion engines (ICEs) may help to speed up the development of the hydrogen energy market and contribute to the decarbonization of the transportation sector. In this work, a commercial 1.4 L four-cylinder Volkswagen spark-ignition engine previously adapted to operate on pure hydrogen has been fueled with hydrogen/methane mixtures with 5–20 vol.% methane (29.6–66.7 wt.%). An experimental program has been executed by varying the fuel composition, air-to-fuel ratio (λ), spark advance and engine speed. A discussion of the results regarding the engine performance (brake torque, brake mean effective pressure, thermal efficiency) and emissions (nitrogen oxides, CO and unburned hydrocarbons) is presented. The results reveal that λ is the most influential variable on the engine behavior due to its marked effect on the combustion temperature. As far as relatively high values of λ have to be used to prevent knock, the effect on the engine performance is negative. In contrast, the specific emissions of nitrogen oxides decrease due to a reduced formation of thermal NOx. A clear positive effect of reducing the spark advance on the specific NOx emissions has been observed as well. As concerns CO and unburned hydrocarbons (HCs), their specific emissions increase with the methane content of the fuel mixture, as expected. However, they also increase as λ increases in spite of the lower fuel concentration due to a proportionally higher reduction of the power. Finally, the effect of the increase of the engine speed is positive on the CO and HCs emissions but negative on that of NOx due to improved mixing and higher temperature associated to intensified turbulence in the cylinders.
  • PublicationOpen Access
    Influence of geometry in the behavior of disc-shaped mechanical energy absorbers for agricultural tractors
    (MDPI, 2021) Latorre Biel, Juan Ignacio; Pérez Ezcurdia, Amaya; Benito Amurrio, Marta; Alfaro López, José Ramón; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Disc-shaped mechanical energy absorbers (MEAs), in combination with rollover protection structures (ROPSs), may contribute to the prevention of the infringement of the safety zone and the collapse of the ROPS in case of the overturn of an agricultural tractor. An MEA can absorb a significant amount of potential energy of an overturning tractor and its deformation produces a rotation of the ROPS around the safety zone. In this research, MEAs with two different geometries have been developed. Both geometries present common features, such as disc dimensions, number of rings, and number of arms, but the distribution of the arms differs. Additionally, these MEA were manufactured in steel discs of four different thicknesses, ranging from 2 to 6 mm. The manufactured MEAs were tested in a universal testing machine, and their behavior characterized. From this data, linear models of the MEAs were developed. As a consequence, a number of characteristic parameters were selected and calculated, such as the activation load and the strain energy absorbed in a safe range of applied loads. Some patterns and trends were analyzed from the tested MEAs, which enables a better description of their behavior and the extrapolation of this behavior to other non-tested thicknesses and geometries.
  • PublicationOpen Access
    Conversion of a gasoline engine-generator set to a bi-fuel (hydrogen/gasoline) electronic fuel-injected power unit
    (Elsevier, 2011) Sáinz Casas, David; Diéguez Elizondo, Pedro; Urroz Unzueta, José Carlos; Sopena Serna, Carlos; Guelbenzu Michelena, Eugenio; Pérez Ezcurdia, Amaya; Benito Amurrio, Marta; Marcelino Sádaba, Sara; Arzamendi, G.; Gandía Pascual, Luis; Ingeniería; Ingeniaritza
    The modifications performed to convert a gasoline carbureted engine-generator set to a bi-fuel (hydrogen/gasoline) electronic fuel-injected power unit are described. Main changes affected the gasoline and gas injectors, the injector seats on the existing inlet manifold, camshaft and crankshaft wheels with their corresponding Hall sensors, throttle position and oil temperature sensors as well as the electronic management unit. When working on gasoline, the engine-generator set was able to provide up to 8 kW of continuous electric power (10 kW peak power), whereas working on hydrogen it provided up to 5 kW of electric power at an engine speed of 3000 rpm. The air-to-fuel equivalence ratio (λ) was adjusted to stoichiometric (λ = 1) for gasoline. In contrast, when using hydrogen the engine worked ultra-lean (λ = 3) in the absence of connected electric load and richer as the load increased. Comparisons of the fuel consumptions and pollutant emissions running on gasoline and hydrogen were performed at the same engine speed and electric loads between 1 and 5 kW. The specific fuel consumption was much lower with the engine running on hydrogen than on gasoline. At 5 kW of load up to 26% of thermal efficiency was reached with hydrogen whereas only 20% was achieved with the engine running on gasoline. Regarding the NOx emissions, they were low, of the order of 30 ppm for loads below 4 kW for the engine-generator set working on hydrogen. The bi-fuel engine is very reliable and the required modifications can be performed without excessive difficulties thus allowing taking advantage of the well-established existing fabrication processes of internal combustion engines looking to speed up the implementation of the energetic uses of hydrogen.