Calvo Herrero, Luis
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Calvo Herrero
First Name
Luis
person.page.departamento
Ingeniería
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access CO2 emissions reduction and energy efficiency improvements in paper making drying process control by sensors(MDPI, 2017) Calvo Herrero, Luis; Domingo, Rosario; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen IngeniaritzaThe drying process of paper has many production parameters that can influence both the energy consumed and the characteristics of paper produced. It was found that most of the previous studies conducted on this process assume that the conditions of the facilities are always appropriate. The control of the variables associated with air circulating inside the drying hood is essential to obtain a paper with adequate quality and obtain low ratios of energy consumption and CO2 emissions. This article proposes a new indirect method based on the study of the enthalpy of the airflows inside the production hall and thermographic images that helps to analyze the maintenance state of the enclosure hood drying section in a general process, whereby it can also estimate the emissions and energy losses. The combined use of sensors and equipment has helped to identify energy losses and potential savings in CO2 emissions. The developed method is applied to a paper manufacturing plant that has ratios of energy consumption and CO2 emissions very close to the product benchmark set by the European Authorities. The study corroborates that it can be identified as a significant energy loss in paper making drying process. Analyzing facilities that are in apparently good maintenance conditions, leaks are evident. These energy losses are very significant compared with the theoretical energy consumption, and it can affect the paper moisture profile.Publication Open Access Influence of maintenance actions in the drying stage of a paper mill on CO2 emissions(MDPI, 2021) Calvo Herrero, Luis; Domingo, Rosario; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen IngeniaritzaGreenhouse gases from industrial activities have become a global problem. Emissions management is being developed to raise awareness of the importance of controlling pollution in general and atmospheric emissions in particular. In 2017, the deficit of the rights of issuance in the industrial sectors increased up to 8.3% (verified emissions in 2017 versus allocation in 2017). This trend will increase more at the end of Phase III due to a progressive reduction in allocation. Phase IV will be much more restrictive in allocating emission rights than Phase III. The extra cost of this deficit reinforces the need for industry in general to reduce CO2 and for the paper industry to reduce GHG emissions and generate credits. Old factories are typically identified as sources of pollution in addition to being inefficient compared to new factories. This article discusses the possibilities of-fered by maintenance actions, whose integration into a process can successfully reduce the environmental impact of industrial plants, particularly by reducing the CO2 equivalent emissions (CO2-eq units henceforth CO2) they produce. This case study analyzes the integration of maintenance rules that enable significant thermal energy savings and consequently CO2 emissions reduction associ-ated with papermaking. Managing Key Performance Indicators (KPIs), such as the amount of cold water added to the boiler circuit and the conditions of the air blown into the dryer section hood, can be used as indicators of CO2 emissions generated. The control of the water and temperature reduces these emissions. A defined measure—in this case, t CO2/t Paper—indicates an achievement of a 21% reduction in emissions over the past 8 years.