CO2 emissions reduction and energy efficiency improvements in paper making drying process control by sensors
Date
Authors
Director
Publisher
Impacto
Abstract
The drying process of paper has many production parameters that can influence both the energy consumed and the characteristics of paper produced. It was found that most of the previous studies conducted on this process assume that the conditions of the facilities are always appropriate. The control of the variables associated with air circulating inside the drying hood is essential to obtain a paper with adequate quality and obtain low ratios of energy consumption and CO2 emissions. This article proposes a new indirect method based on the study of the enthalpy of the airflows inside the production hall and thermographic images that helps to analyze the maintenance state of the enclosure hood drying section in a general process, whereby it can also estimate the emissions and energy losses. The combined use of sensors and equipment has helped to identify energy losses and potential savings in CO2 emissions. The developed method is applied to a paper manufacturing plant that has ratios of energy consumption and CO2 emissions very close to the product benchmark set by the European Authorities. The study corroborates that it can be identified as a significant energy loss in paper making drying process. Analyzing facilities that are in apparently good maintenance conditions, leaks are evident. These energy losses are very significant compared with the theoretical energy consumption, and it can affect the paper moisture profile.
Description
Keywords
Department
Faculty/School
Degree
Doctorate program
item.page.cita
item.page.rights
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.