Rodríguez Falces, Javier
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Rodríguez Falces
First Name
Javier
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
5 results
Search Results
Now showing 1 - 5 of 5
Publication Open Access The first and second phases of the muscle compound action potential in the thumb are differently affected by electrical stimulation trains(American Physiological Society, 2024) Lanfranchi, Clément; Rodríguez Falces, Javier; Place, Nicolas; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCSarcolemmal membrane excitability is often evaluated by considering the peak-to-peak amplitude of the compound muscle action potential (M wave). However, the first and second M-wave phases represent distinct properties of the muscle action potential, which are differentially affected by sarcolemma properties and other factors such as muscle architecture. Contrasting with previous studies in which voluntary contractions have been used to induce muscle fatigue, we used repeated electrically induced tetanic contractions of the adductor pollicis muscle and assessed the kinetics of M-wave properties during the course of the contractions. Eighteen participants (24 ± 6 yr; means ± SD) underwent 30 electrically evoked tetanic contractions delivered at 30 Hz, each lasting 3 s with 1 s intervals. We recorded the amplitudes of the first and second M-wave phases for each stimulation. During the initial stimulation train, the first and second M-wave phases exhibited distinct kinetics. The first phase amplitude showed a rapid decrease to reach ~59% of its initial value (P < 0.001), whereas the second phase amplitude displayed an initial transient increase of ~19% (P ¼ 0.007). Within subsequent trains, both the first and second phase amplitudes consistently decreased as fatigue developed with a reduction during the last train reaching ~47% of its initial value (P < 0.001). Analyzing the first M wave of each stimulation train unveiled different kinetics for the first and second phases during the initial trains, but these distinctions disappeared as fatigue progressed. These findings underscore the interplay of factors affecting the M wave and emphasize the significance of separately scrutinizing its first and second phases when assessing membrane excitability adjustments during muscle contractions.Publication Open Access M-wave changes caused by brief voluntary and stimulated isometric contractions(Springer, 2023) Rodríguez Falces, Javier; Malanda Trigueros, Armando; Navallas Irujo, Javier; Place, Nicolas; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIntroduction Under isometric conditions, the increase in muscle force is accompanied by a reduction in the fbers’ length. The efects of muscle shortening on the compound muscle action potential (M wave) have so far been investigated only by computer simulation. This study was undertaken to assess experimentally the M-wave changes caused by brief voluntary and stimulated isometric contractions. Methods Two diferent methods of inducing muscle shortening under isometric condition were adopted: (1) applying a brief (1 s) tetanic contraction and (2) performing brief voluntary contractions of diferent intensities. In both methods, supramaximal stimulation was applied to the brachial plexus and femoral nerves to evoke M waves. In the frst method, electrical stimulation (20 Hz) was delivered with the muscle at rest, whereas in the second, stimulation was applied while participants performed 5-s stepwise isometric contractions at 10, 20, 30, 40, 50, 60, 70, and 100% MVC. The amplitude and duration of the frst and second M-wave phases were computed. Results The main fndings were: (1) on application of tetanic stimulation, the amplitude of the M-wave frst phase decreased (~10%, P<0.05), that of the second phase increased (~50%, P<0.05), and the M-wave duration decreased (~20%, P<0.05) across the frst fve M waves of the tetanic train and then plateaued for the subsequent responses; (2) when superimposing a single electrical stimulus on muscle contractions of increasing forces, the amplitude of the M-wave frst phase decreased (~20%, P<0.05), that of the second phase increased (~30%, P<0.05), and M-wave duration decreased (~30%, P<0.05) as force was raised from 0 to 60–70% MVC force. Conclusions The present results will help to identify the adjustments in the M-wave profle caused by muscle shortening and also contribute to diferentiate these adjustments from those caused by muscle fatigue and/or changes in Na+–K+ pump activity.Publication Open Access End-of-fiber signals strongly influence the first and second phases of the M wave in the vastus lateralis: implications for the study of muscle excitability(Frontiers Media, 2018) Rodríguez Falces, Javier; Place, Nicolas; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaIt has been recurrently observed that, for compound muscle action potentials (M wave) recorded over the innervation zone of the vastus lateralis, the descending portion of the first phase generally shows an 'inflection' or 'shoulder'. We sought to clarify the electrical origin of this shoulder-like feature and examine its implications. M waves evoked by maximal single shocks to the femoral nerve were recorded in monopolar and bipolar configurations from 126 individuals using classical (10-mm recording diameter, 20-mm inter-electrode distance) electrodes and from eight individuals using small electrodes arranged in a linear array. The changes of the M-wave waveform at different positions along the muscle fibers' direction were examined. The shoulder was identified more frequently in monopolar (97%) than in bipolar (46%) M waves. The shoulder of M waves recorded at different distances from the innervation zone had the same latency. Furthermore, the shoulder of the M wave recorded over the innervation zone coincided in latency with the positive peak of that recorded beyond the muscle. The positive phase of the M wave detected 20 mm away from the innervation zone was essentially composed of non-propagating components. The shoulder-like feature in monopolar and bipolar M waves results from the termination of action potentials at the superficial aponeurosis of the vastus lateralis. We conclude that, only the amplitude of the first phase, and not the second, of M waves recorded monopolarly and/or bipolarly in close proximity to the innervation zone can be used reliably to monitor possible changes in muscle membrane excitability.Publication Open Access Electromyographic, cerebral, and muscle hemodynamic responses during intermittent, isometric contractions of the biceps brachii at three submaximal intensities(Frontiers Media, 2014) Bhambhani, Yagesh; Fan, Jui Lin; Place, Nicolas; Rodríguez Falces, Javier; Kayser, Bengt; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaThis study examined the electromyographic, cerebral and muscle hemodynamic responses during intermittent isometric contractions of biceps brachii at 20, 40, and 60% of maximal voluntary contraction (MVC). Eleven volunteers completed 2 min of intermittent isometric contractions (12/min) at an elbow angle of 90° interspersed with 3 min rest between intensities in systematic order. Surface electromyography (EMG) was recorded from the right biceps brachii and near infrared spectroscopy (NIRS) was used to simultaneously measure left prefrontal and right biceps brachii oxyhemoglobin (HbO2), deoxyhemoglobin (HHb), and total hemoglobin (Hbtot). Transcranial Doppler ultrasound was used to measure middle cerebral artery velocity (MCAv) bilaterally. Finger photoplethysmography was used to record beat-to-beat blood pressure and heart rate. EMG increased with force output from 20 to 60% MVC (P < 0.05). Cerebral HbO2 and Hbtot increased while HHb decreased during contractions with differences observed between 60% vs. 40% and 20% MVC (P < 0.05). Muscle HbO2 decreased while HHb increased during contractions with differences being observed among intensities (P < 0.05). Muscle Hbtot increased from rest at 20% MVC (P < 0.05), while no further change was observed at 40 and 60% MVC (P > 0.05). MCAv increased from rest to exercise but was not different among intensities (P > 0.05). Force output correlated with the root mean square EMG and changes in muscle HbO2 (P < 0.05), but not changes in cerebral HbO2 (P > 0.05) at all three intensities. Force output declined by 8% from the 1st to the 24th contraction only at 60% MVC and was accompanied by systematic increases in RMS, cerebral HbO2 and Hbtot with a leveling off in muscle HbO2 and Hbtot. These changes were independent of alterations in mean arterial pressure. Since cerebral blood flow and oxygenation were elevated at 60% MVC, we attribute the development of fatigue to reduced muscle oxygen availability rather than impaired central neuronal activation.Publication Open Access Sarcolemmal excitability, M-Wave changes, and conduction velocity during a sustained low-force contraction(Frontiers Media, 2021) Rodríguez Falces, Javier; Place, Nicolas; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThis study was undertaken to investigate whether sarcolemmal excitability is impaired during a sustained low-force contraction [10% maximal voluntary contraction (MVC)] by assessing muscle conduction velocity and also by analyzing separately the first and second phases of the muscle compound action potential (M wave). Twenty-one participants sustained an isometric knee extension of 10% MVC for 3min. M waves were evoked by supramaximal single shocks to the femoral nerve given at 10-s intervals. The amplitude, duration, and area of the first and second M-wave phases were computed. Muscle fiber conduction velocity, voluntary surface electromyographic (EMG), perceived effort, MVC force, peak twitch force, and temperature were also recorded. The main findings were: (1) during the sustained contraction, conduction velocity remained unchanged. (2) The amplitude of the M-wave first phase decreased for the first ~30s (−7%, p<0.05) and stabilized thereafter, whereas the second phase amplitude increased for the initial ~30s (+7%, p<0.05), before stabilizing. (3) Both duration and area decreased steeply during the first ~30s, and then more gradually for the rest of the contraction. (4) During the sustained contraction, perceived effort increased fivefold, whereas knee extension EMG increased by ~10%. (5) Maximal voluntary force and peak twitch force decreased (respectively, −9% and −10%, p<0.05) after the low-force contraction. Collectively, the present results indicate that sarcolemmal excitability is well preserved during a sustained 10% MVC task. A depression of the M-wave first phase during a low-force contraction can occur even in the absence of changes in membrane excitability. The development of fatigue during a low-force contraction can occur without alteration of membrane excitability.