Porta Cuéllar, Sonia
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Porta Cuéllar
First Name
Sonia
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
7 results
Search Results
Now showing 1 - 7 of 7
Publication Open Access Exact inter-discharge interval distribution of motor unit firing patterns with gamma model(Springer, 2019) Navallas Irujo, Javier; Porta Cuéllar, Sonia; Malanda Trigueros, Armando; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenInter-discharge interval distribution modeling of the motor unit firing pattern plays an important role in electromyographic decomposition and the statistical analysis of firing patterns. When modeling firing patterns obtained from automatic procedures, false positives and false negatives can be taken into account to enhance performance in estimating firing pattern statistics. Available models of this type, however, are only approximate and use Gaussian distributions, which are not strictly suitable for modeling renewal point processes. In this paper, the theory of point processes is used to derive an exact solution to the distribution when a gamma distribution is used to model the physiological firing pattern. Besides being exact, the solution provides a way to model the skewness of the inter-discharge distribution, and this may make it possible to obtain a better fit with available experimental data. In order to demonstrate potential applications of the model, we use it to obtain a maximum likelihood estimator of firing pattern statistics. Our tests found this estimator to be reliable over a wide range of firing conditions, whether dealing with real or simulated firing patterns, the proposed solution had better agreement than other models.Publication Open Access Introducing I2Head database(ACM (Association for Computing Machinery), 2018) Martinikorena Aranburu, Ion; Cabeza Laguna, Rafael; Villanueva Larre, Arantxa; Porta Cuéllar, Sonia; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenI2Head database has been created with the aim to become an optimal reference for low cost gaze estimation. It exhibits the following outstanding characteristics: it takes into account key aspects of low resolution eye tracking technology; it combines images of users gazing at different grids of points from alternative positions with registers of user's head position and it provides calibration information of the camera and a simple 3D head model for each user. Hardware used to build the database includes a 6D magnetic sensor and a webcam. A careful calibration method between the sensor and the camera has been developed to guarantee the accuracy of the data. Different sessions have been recorded for each user including not only static head scenarios but also controlled displacements and even free head movements. The database is an outstanding framework to test both gaze estimation algorithms and head pose estimation methods.Publication Open Access SeTA: semiautomatic tool for annotation of eye tracking images(ACM, 2019) Larumbe Bergera, Andoni; Porta Cuéllar, Sonia; Cabeza Laguna, Rafael; Villanueva Larre, Arantxa; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenAvailability of large scale tagged datasets is a must in the field of deep learning applied to the eye tracking challenge. In this paper, the potential of Supervised-Descent-Method (SDM) as a semiautomatic labelling tool for eye tracking images is shown. The objective of the paper is to evidence how the human effort needed for manually labelling large eye tracking datasets can be radically reduced by the use of cascaded regressors. Different applications are provided in the fields of high and low resolution systems. An iris/pupil center labelling is shown as example for low resolution images while a pupil contour points detection is demonstrated in high resolution. In both cases manual annotation requirements are drastically reduced.Publication Open Access Sliding window averaging in normal and pathological motor unit action potential trains(Elsevier, 2018) Malanda Trigueros, Armando; Navallas Irujo, Javier; Rodríguez Falces, Javier; Porta Cuéllar, Sonia; Fernández Martínez, Miguel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenObjective: To evaluate the performance of a recently proposed motor unit action potential (MUAP) averaging method based on a sliding window, and compare it with relevant published methods in normal and pathological muscles. Methods: Three versions of the method (with different window lengths) were compared to three relevant published methods in terms of signal analysis-based merit figures and MUAP waveform parameters used in the clinical practice. 218 MUAP trains recorded from normal, myopathic, subacute neurogenic and chronic neurogenic muscles were analysed. Percentage scores of the cases in which the methods obtained the best performance or a performance not significantly worse than the best were computed. Results: For signal processing figures of merit, the three versions of the new method performed better (with scores of 100, 86.6 and 66.7%) than the other three methods (66.7, 25 and 0%, respectively). In terms of MUAP waveform parameters, the new method also performed better (100, 95.8 and 91.7%) than the other methods (83.3, 37.5 and 25%). Conclusions: For the types of normal and pathological muscle studied, the sliding window approach extracted more accurate and reliable MUAP curves than other existing methods. Significance: The new method can be of service in quantitative EMG.Publication Open Access Hybrid method based on topography for robust detection of iris center and eye corners(ACM (Association for Computing Machinery), 2013) Villanueva Larre, Arantxa; Ponz Sarvisé, Victoria; Sesma Sánchez, Laura; Ariz Galilea, Mikel; Porta Cuéllar, Sonia; Cabeza Laguna, Rafael; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenA multi-stage procedure to detect eye features is presented. Multiresolution and topographic classification are used to detect the iris center. The eye corner is calculated combining valley detection and eyelid curve extraction. The algorithm is tested in the BioID database and in a proprietary database containing more than 1200 images. The results show that the suggested algorithm is robust and accurate. Regarding the iris center our method obtains the best average behavior for the BioID database compared to other available algorithms. Additional contributions are that our algorithm functions in real time and does not require complex post processing stages.Publication Open Access Motor unit profile: a new way to describe the scanning-EMG potential(Elsevier, 2017) Corera Orzanco, Íñigo; Malanda Trigueros, Armando; Rodríguez Falces, Javier; Porta Cuéllar, Sonia; Navallas Irujo, Javier; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaThe motor unit profile, a representation of the trajectories of positive and negative turns of a scanning-EMG signal, is a new way to characterize the motor unit potential. Such characterization allows quantification of the scanning-EMG signal's complexity, which is closely related to the anatomy and physiology of the motor unit. To extract the motor unit profile, an algorithm that detects the turns of the scanning-EMG signal and links them using point-tracking techniques has been developed. The performance of this algorithm is sensitive to three parameters: the turn detection threshold, the maximum tracking interval threshold, and the trajectory purge threshold. Real scanning-EMG signals have been used to analyze the algorithm's behavior and the influence of the algorithm's parameters and to determine which parameter values provide the best performance.Publication Open Access U2Eyes: a binocular dataset for eye tracking and gaze estimation(IEEE, 2019) Porta Cuéllar, Sonia; Bossavit, Benoît; Cabeza Laguna, Rafael; Larumbe Bergera, Andoni; Garde Lecumberri, Gonzalo; Villanueva Larre, Arantxa; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenTheory shows that huge amount of labelled data are needed in order to achieve reliable classification/regression methods when using deep/machine learning techniques. However, in the eye tracking field, manual annotation is not a feasible option due to the wide variability to be covered. Hence, techniques devoted to synthesizing images show up as an opportunity to provide vast amounts of annotated data. Considering that the well-known UnityEyes tool provides a framework to generate single eye images and taking into account that both eyes information can contribute to improve gaze estimation accuracy we present U2Eyes dataset, that is publicly available. It comprehends about 6 million of synthetic images containing binocular data. Furthermore, the physiology of the eye model employed is improved, simplified dynamics of binocular vision are incorporated and more detailed 2D and 3D labelled data are provided. Additionally, an example of application of the dataset is shown as work in progress. Employing U2Eyes as training framework Supervised Descent Method (SDM) is used for eyelids segmentation. The model obtained as result of the training process is then applied on real images from GI4E dataset showing promising results.