SeTA: semiautomatic tool for annotation of eye tracking images

Date

2019

Director

Publisher

ACM
Acceso abierto / Sarbide irekia
Contribución a congreso / Biltzarrerako ekarpena
Versión aceptada / Onetsi den bertsioa

Project identifier

  • AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84388-R/ES/ recolecta
Impacto
No disponible en Scopus

Abstract

Availability of large scale tagged datasets is a must in the field of deep learning applied to the eye tracking challenge. In this paper, the potential of Supervised-Descent-Method (SDM) as a semiautomatic labelling tool for eye tracking images is shown. The objective of the paper is to evidence how the human effort needed for manually labelling large eye tracking datasets can be radically reduced by the use of cascaded regressors. Different applications are provided in the fields of high and low resolution systems. An iris/pupil center labelling is shown as example for low resolution images while a pupil contour points detection is demonstrated in high resolution. In both cases manual annotation requirements are drastically reduced.

Description

Keywords

Image annotation, Eye tracking, Supervised-descent method

Department

Ingeniería Eléctrica, Electrónica y de Comunicación / Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren

Faculty/School

Degree

Doctorate program

item.page.cita

Andoni Larumbe-Bergera, Sonia Porta, Rafael Cabeza, and Arantxa Villanueva. 2019. SeTA: Semiautomatic Tool for Annotation of Eye Tracking Images. In 2019 Symposium on Eye Tracking Research and Applications (ETRA ’19), June 25–28, 2019, Denver , CO, USA. ACM, New York, NY, USA, 5 pages.https://doi.org/10.1145/3314111.3319830

item.page.rights

© 2019 Copyright held by the owner/author(s).

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.