Porta Cuéllar, Sonia

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Porta Cuéllar

First Name

Sonia

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Low cost gaze estimation: knowledge-based solutions
    (IEEE, 2020) Martinikorena Aranburu, Ion; Larumbe Bergera, Andoni; Ariz Galilea, Mikel; Porta Cuéllar, Sonia; Cabeza Laguna, Rafael; Villanueva Larre, Arantxa; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Eye tracking technology in low resolution scenarios is not a completely solved issue to date. The possibility of using eye tracking in a mobile gadget is a challenging objective that would permit to spread this technology to non-explored fields. In this paper, a knowledge based approach is presented to solve gaze estimation in low resolution settings. The understanding of the high resolution paradigm permits to propose alternative models to solve gaze estimation. In this manner, three models are presented: a geometrical model, an interpolation model and a compound model, as solutions for gaze estimation for remote low resolution systems. Since this work considers head position essential to improve gaze accuracy, a method for head pose estimation is also proposed. The methods are validated in an optimal framework, I2Head database, which combines head and gaze data. The experimental validation of the models demonstrates their sensitivity to image processing inaccuracies, critical in the case of the geometrical model. Static and extreme movement scenarios are analyzed showing the higher robustness of compound and geometrical models in the presence of user’s displacement. Accuracy values of about 3◦ have been obtained, increasing to values close to 5◦ in extreme displacement settings, results fully comparable with the state-of-the-art.
  • PublicationOpen Access
    U2Eyes: a binocular dataset for eye tracking and gaze estimation
    (IEEE, 2019) Porta Cuéllar, Sonia; Bossavit, Benoît; Cabeza Laguna, Rafael; Larumbe Bergera, Andoni; Garde Lecumberri, Gonzalo; Villanueva Larre, Arantxa; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Theory shows that huge amount of labelled data are needed in order to achieve reliable classification/regression methods when using deep/machine learning techniques. However, in the eye tracking field, manual annotation is not a feasible option due to the wide variability to be covered. Hence, techniques devoted to synthesizing images show up as an opportunity to provide vast amounts of annotated data. Considering that the well-known UnityEyes tool provides a framework to generate single eye images and taking into account that both eyes information can contribute to improve gaze estimation accuracy we present U2Eyes dataset, that is publicly available. It comprehends about 6 million of synthetic images containing binocular data. Furthermore, the physiology of the eye model employed is improved, simplified dynamics of binocular vision are incorporated and more detailed 2D and 3D labelled data are provided. Additionally, an example of application of the dataset is shown as work in progress. Employing U2Eyes as training framework Supervised Descent Method (SDM) is used for eyelids segmentation. The model obtained as result of the training process is then applied on real images from GI4E dataset showing promising results.