Publication:
Low cost gaze estimation: knowledge-based solutions

Date

2020

Director

Publisher

IEEE
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

MINECO//TIN2014-52897-R/ES/recolecta
AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84388-R/ES/recolecta
Métricas Alternativas

Abstract

Eye tracking technology in low resolution scenarios is not a completely solved issue to date. The possibility of using eye tracking in a mobile gadget is a challenging objective that would permit to spread this technology to non-explored fields. In this paper, a knowledge based approach is presented to solve gaze estimation in low resolution settings. The understanding of the high resolution paradigm permits to propose alternative models to solve gaze estimation. In this manner, three models are presented: a geometrical model, an interpolation model and a compound model, as solutions for gaze estimation for remote low resolution systems. Since this work considers head position essential to improve gaze accuracy, a method for head pose estimation is also proposed. The methods are validated in an optimal framework, I2Head database, which combines head and gaze data. The experimental validation of the models demonstrates their sensitivity to image processing inaccuracies, critical in the case of the geometrical model. Static and extreme movement scenarios are analyzed showing the higher robustness of compound and geometrical models in the presence of user’s displacement. Accuracy values of about 3◦ have been obtained, increasing to values close to 5◦ in extreme displacement settings, results fully comparable with the state-of-the-art.

Description

Keywords

Gaze estimation methods, Low resolution, Eye tracking

Department

Ingeniería Eléctrica, Electrónica y de Comunicación / Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren

Faculty/School

Degree

Doctorate program

item.page.cita

I. Martinikorena, A. Larumbe-Bergera, M. Ariz, S. Porta, R. Cabeza and A. Villanueva, 'Low Cost Gaze Estimation: Knowledge-Based Solutions,' in IEEE Transactions on Image Processing, vol. 29, pp. 2328-2343, 2020. doi: 10.1109/TIP.2019.2946452

item.page.rights

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.