Person:
Arregui San Martín, Francisco Javier

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Arregui San Martín

First Name

Francisco Javier

person.page.departamento

ORCID

0000-0002-3311-0834

person.page.upna

1739

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    Mode transition in complex refractive index coated single-mode–multimode–single-mode structure
    (Optical Society of America, 2013) Socorro Leránoz, Abián Bentor; Del Villar, Ignacio; Corres Sanz, Jesús María; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    By coating a single-mode–multimode–single-mode (SMS) structure with a high refractive index thin-film it is possible to obtain a transition of modes for specific combinations of thin-film thickness, thinfilm refractive index and surrounding medium refractive index, which permits to develop devices with a high sensitivity to specific parameters. In order to gain a better knowledge of the phenomenon the experimental results are corroborated numerically with the Transfer-Matrix-Method. The influence of losses in the thin-film has also been studied. The results obtained prove that a thin-film coated SMS structure is a simple and costeffective platform for development of sensors and optical filters.
  • PublicationOpen Access
    Refractometric sensors based on multimode interference in a thin-film coated singlemode– multimode–single-mode structure with reflection configuration
    (Optical Society of America, 2014) Del Villar, Ignacio; Socorro Leránoz, Abián Bentor; Corres Sanz, Jesús María; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    Thin-film coated single-mode–multimode–single-mode (SMS) structures have been analyzed both theoretically and experimentally with the aim of detecting different refractive indices. By adequate selection of the thickness of the thin film and of the diameter of the multimode segment in the SMS structure, a seven-fold improvement can be obtained in the sensitivity of the device to the surrounding medium refractive index, achieving a maximum sensitivity of 1199.18 nm∕refractive index unit for the range of refractive indices from 1.321 to 1.382. Using layer-by-layer self-assembly for deposition, both on the cladding and on the tip of the multimode segment, allows the reflected power to increase, which avoids the application of a mirror on the tip of the multimode segment.
  • PublicationOpen Access
    Sensors based on thin-film coated cladding removed multimode optical fiber and single-mode multimode single-mode fiber: a comparative study
    (Hindawi Publishing Corporation, 2015) Del Villar, Ignacio; Socorro Leránoz, Abián Bentor; Hernáez Sáenz de Zaitigui, Miguel; Corres Sanz, Jesús María; Ruiz Zamarreño, Carlos; Sánchez Zábal, Pedro; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Two simple optical fibre structures that do not require the inscription of a grating, a cladding removed multimode optical fibre (CRMOF) and a single-mode multimode single-mode structure (SMS), are compared in terms of their adequateness for sensing once they are coated with thin-films.The thin-film deposited (TiO2/PSS) permits increasing the sensitivity to surrounding medium refractive index. The results obtained can be extrapolated to other fields such as biological or chemical sensing just by replacing the thin-film by a specific material.
  • PublicationOpen Access
    A comparative study between SMS interferometers and lossy mode resonace optical fiber devices for sensing applications
    (SPIE, 2015) Socorro Leránoz, Abián Bentor; Hernáez Sáenz de Zaitigui, Miguel; Del Villar, Ignacio; Corres Sanz, Jesús María; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Universidad Pública de Navarra / Nafaroako Unibertsitate Publikoa
    Optical fiber sensors are of great interest due to their intrinsic advantages over electronic sensors. In this work, the sensing characteristics of two different and novel optical fiber devices are compared, after simultaneously depositing a thin-film using the layer-by-layer assembly deposition process. The first one is an SMS structure, formed by splicing two single-mode fiber pigtails on both sides of a coreless multimode fiber segment. This structure induces an interferometric phenomenon that generates several attenuation and transmission bands along the spectrum. These bands are sensitive to variations in the surrounding refractive index, although this sensitivity has been enhanced by a TiO2/PSS thin-film. The other device is a 40 mm uncladded segment of a 200 µm-core multimode optical fiber. When coated by a TiO2/PSS thinfilm, part of the light transmitted into the uncladded core is coupled into the thin-film, generating a lossy mode resonance (LMR). The absorption peaks due to these phenomena red-shift as long as the thin-film thickness increases or the external RI becomes higher. The performance of these devices as refractometers and relative humidity sensors are tested. Results show that the LMR-based sensor is more sensitive in both situations, in spite of its lower sensitivity. Particularly, it presents a 7-fold sensitivity enhancement when measuring surrounding medium refractive index changes and a 10-fold sensitivity enhancement when measuring environmental relative humidity. To our knowledge, this is the first time that a comparative study between SMS and LMR sensors is performed.