Arregui San Martín, Francisco Javier

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Arregui San Martín

First Name

Francisco Javier

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 147
  • PublicationOpen Access
    Silver nanoparticles loaded electrospun nanofibers for humidity optical fiber sensing
    (2012) Urrutia Azcona, Aitor; Rivero Fuente, Pedro J.; Goicoechea Fernández, Javier; Rodríguez, Yoany; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    In this work, a new optical device based on silver loaded electrospun nanofibers (ENFs) for measuring Relative Humidity is proposed. Fiber mats composed of poly(acrylic acid) and β-cyclodextrin were deposited onto an optical fiber core by electrospinning. Afterwards the ENFs were submitted to a thermal curing. Then, the ENFs were loaded with Ag nanoparticles (Ag NPs) synthesized using a Ag+ loading step and a further reduction step with dimethylamine borane (DMAB). Several load/reduction cycles were performed. Ag NPs enhance significantly the optical response of the polymer-only fiber mats. The Ag NPs loaded ENF sensor was tested using controlled variations of Relative Humidity (RH). The results showed a very fast response of the absorbance spectra enabling high performance applications such as human breathing monitoring.
  • PublicationOpen Access
    Spectral evolution with incremental nanocoating of long period fiber gratings
    (Optical Society of America, 2006) Del Villar, Ignacio; Corres Sanz, Jesús María; Achaerandio Alvira, Miguel; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    The incremental deposition of a thin overlay on the cladding of a long-period fiber grating (LPFG) induces important resonance wavelength shifts in the transmission spectrum. The phenomenon is proved theoretically with a vectorial method based on hybrid modes and coupled mode theory, and experimentally with electrostatic self-assembly monolayer process. The phenomenon is repeated periodically for specific overlay thickness values with the particularity that the shape of the resonance wavelength shift depends on the thickness of the overlay. The main applications are the design of wide optical filters and multiparameter sensing devices.
  • PublicationOpen Access
    Fringe generation with non-uniformly coated long-period fiber gratings
    (Optical Society of America, 2007) Del Villar, Ignacio; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Cusano, Andrea; Paladino, Domenico; Cutolo, Antonello; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this work, the spectral characteristics of non-uniform symmetrically ring shaped coatings deposited on long-period fiber gratings (LPFGs) have been theoretically and experimentally investigated. To optimize the structure performances, the device was designed with a simulation tool based on vectorial analysis of modes in a multilayer cylindrical waveguide and coupled mode theory. Electrostatic selfassembling technique was selected to deposit with fine control uniform azimuthally symmetric coatings on the cladding of the LPFG. UV laser micromachining operating at 193nm was used to selectively remove the coating with high spatial resolution and with azimuthal symmetry. By locally and selectively removing portions of the overlay surrounding the LPFG from the middle of the grating, strong modifications of its spectral characteristics were observed. Phase-shift effects and multiple interference fringes have been observed for all the attenuation bands, strongly depending on the length of the uncoated region and the overlay features (thickness and optical properties). This provides a valid technological platform for the development of advanced photonic devices for sensing and telecommunication applications.
  • PublicationOpen Access
    SnO2 based optical fiber refractometers
    (SPIE, 2012) Sánchez Zábal, Pedro; Ruiz Zamarreño, Carlos; Hernáez Sáenz de Zaitigui, Miguel; Del Villar, Ignacio; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    In this work, the fabrication and characterization of refractometers based on lossy mode resonances (LMR) is presented. Tin dioxide (SnO2) films deposited on optical fibers are used as the LMR supporting coatings. These resonances shift to the red as a function of the external refractive index, enabling the fabrication of robust and highly reproducible wavelength-based optical fiber refractometers. The obtained SnO2-based refractometer shows an average sensitivity of 7198 nm/refractive index unit (RIU) in the range 1.333-1.420 RIU.
  • PublicationOpen Access
    Fabrication of Bragg gratings on the end facet of standard optical fibers by sputtering the same material
    (IEEE, 2016) Ascorbe Muruzabal, Joaquín; Corres Sanz, Jesús María; Del Villar, Ignacio; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    A sputtering process has been applied to deposit quarter-wavelength stacks on the end facet of cleaved optical fibers by using only one sputtering target. Standard multimode optical fibers were used as substrates to fabricate broadband filters, and the experimentally measured spectral responses of these devices are shown. Periodical changes in the refractive index of the coating have been achieved by changing the vacuum chamber pressure. A reflected peak with a full-width at half-maximum of 20 nm centered at 440 nm has been obtained, which provides a good structure for the development of optical fiber sensors working with the wavelength detection technique. This optical structure can be used for several purposes: as tunable wavelength filters or optical fiber sensors or to improve the performance of fluorescence sensors. A theoretical analysis of these structures corroborates the experimental results and allows some rules to be obtained.
  • PublicationOpen Access
    Humidity sensor based on silver nanopartlcles embedded in a polymeric coating
    (Sciendo, 2012) Rivero Fuente, Pedro J.; Urrutia Azcona, Aitor; Goicoechea Fernández, Javier; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería; Ingeniaritza; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC
    In this work, it is presented a novel optical fiber humidity sensor based on silver nanoparticle-loaded polymeric coatings built onto an optical fiber core. The polymeric film was fabricated using the Layer-by-Layer assembly technique. The silver nanoparticles (Ag NPs) were characterized using transmission electron microscopy (TEM and UV-VIS spectroscopy. A Localized Surface Plasmon Resonance (LSPR) attenuation band is observed when the thickness of the coating increases, and showed a very good sensitivity to Relative Humidity (RH) variations, suitable for high performance applications such as human breathing monitoring.
  • PublicationOpen Access
    D-shape optical fiber refractometer based on TM and TE lossy mode resonances
    (SPIE, 2014) Zubiate Orzanco, Pablo; Ruiz Zamarreño, Carlos; Del Villar, Ignacio; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza
    The fabrication and characterization of an optical fiber refractometer based on Lossy Mode Resonances (LMR) is presented. TiO2/ poly (sodium 4-styrenesulfonate) coatings deposited on side-polished D-shaped optical fibers are used as LMR supporting coatings. LMRs are sensitive to the external medium refractive index and D-shaped optical fibers enable the observation of TE and TM LMR polarizations. These refractometers based on TE and TM LMR showed an average sensitivity of 2737 nm/RIU and 2893 nm/RIU respectively for a surrounding medium refractive index (SMRI) range from 1.35 to 1.41.
  • PublicationOpen Access
    Straightforward nano patterning on optical fiber for sensors development
    (Optical Society of America, 2020) Acha Morrás, Nerea de; Elia Lorente, Victor; Delgado Camón, Arantzazu; Arregui San Martín, Francisco Javier; Elosúa Aguado, César; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua, PI035 BINACS
    A simple method to prepare a nano pattern along the surface of an optical fiber is applied in this Letter to develop a pH sensor. The template is made of a block copolymer that defines specific locations where gold nano particles are adsorbed on forming clusters. The average diameter of the resulting agglomerates is 121 nm, and the mean distance between the centers is 182 nm. The morphology of the gold cluster array produces localized surface plasmon resonance. The absorbance spectrum is affected by pH variations, and the ratio between the absorption at two different wavelengths is used to characterize the response, which is repetitive and reversible. This Letter highlights the potentiality of this type of chemical nano patterning for the development of optical fiber sensors.
  • PublicationOpen Access
    Etched and nanocoated SMS fiber sensor for detection of salinity concentration
    (MDPI, 2017) Cardona-Maya, Yamile; Del Villar, Ignacio; Socorro Leránoz, Abián Bentor; Corres Sanz, Jesús María; Arregui San Martín, Francisco Javier; Botero-Cadavid, Juan F.; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua: 2016/PI008; Gobierno de Navarra / Nafarroako Gobernua: 2016/PC025; Gobierno de Navarra / Nafarroako Gobernua: 2016/PC026
    An optical fibre refractometer has been developed by etching and deposition of a thin film of indium tin oxide (ITO) on a single-mode-multimode-single-mode (SMS) fibre structure. The interference between modes in this structure is sensitive to the refractive index changes of the surrounding medium, achieving sensitivities of up to 7000 nm/RIU in the 1.333–1.338 RIU range. A salinity sensor has been implemented as a practical application of this proposed structure. Fast Fourier transform (FFT) analysis and tracking of an interference dip were used to monitor the interference between modes obtaining sensitivities of 0.99 nm/PSU and 0.025 rad/PSU, respectively.
  • PublicationOpen Access
    Detection of ethanol in human breath using optical fiber long period grating coated with metal-organic frameworks
    (MDPI, 2017) Acha Morrás, Nerea de; Hromadka, Jiri; Tokay, Begum; Correia, Ricardo; Elosúa Aguado, César; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Morgan, Stephen P.; Korposh, Sergiy; Ingeniaritza Elektrikoa eta Elektronikoa; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Eléctrica y Electrónica
    An optical fiber sensor for ethanol detection in exhaled breath has been developed. It has been fabricated by functionalizing a Long Period Grating with a metal-organic framework, ZIF-8. The sensor’s response was tested by exposure to exhaled breath of a person before and after the ingestion of alcoholic drinks, showing a higher wavelength difference between the resonance bands in the second case. Further work will analyze cross-sensitivity towards temperature, relative humidity and carbon dioxide.