Arregui San Martín, Francisco Javier

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Arregui San Martín

First Name

Francisco Javier

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    Optical fiber refractometers based on indium tin oxide coatings with response in the visible spectral region
    (Elsevier, 2011) Ruiz Zamarreño, Carlos; López, S.; Hernáez Sáenz de Zaitigui, Miguel; Del Villar, Ignacio; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    This work presents the fabrication of optical fiber refractometers based on indium tin oxide (ITO) coatings with response in the visible spectral region. ITO thin-films have been sputtered by employing a rotating mechanism that enables the fabrication of smooth homogeneous coatings onto the optical fiber core. The ITO coated optical fiber devices present several resonances in the visible and infra-red region. These resonances show high optical power attenuations (more than 10 dB) in the visible spectral region, which produces changes in the colour of the output visible light. Therefore, since these resonances shift as a function of the surrounding medium refractive index (SMRI), it is feasible to determine the refractive index of the outer medium in contact with the ITO coating by simply monitoring the chromatic coordinates of the visible output light.
  • PublicationOpen Access
    Optical fiber sensors based on indium tin oxide surface plasmon resonance supporting coatings
    (SPIE, 2009-10-05) Ruiz Zamarreño, Carlos; Hernáez Sáenz de Zaitigui, Miguel; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this work, surface plasmon resonance (SPR) based optical fiber sensors are revisited by using a transparent conductive coating, Indium Tin Oxide in our case, as the SPR supporting layer. The utilization of these coatings shifts the plasmon resonance band to the infra-red region and allows the tunability of the SPR wavelength by adjusting the film fabrication parameters. Here, we study the fabrication process of these novel devices and characterize their response to variations in the refractive index of the external medium opening the door to a wide range of applications.
  • PublicationOpen Access
    SnO2 based optical fiber refractometers
    (SPIE, 2012) Sánchez Zábal, Pedro; Ruiz Zamarreño, Carlos; Hernáez Sáenz de Zaitigui, Miguel; Del Villar, Ignacio; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    In this work, the fabrication and characterization of refractometers based on lossy mode resonances (LMR) is presented. Tin dioxide (SnO2) films deposited on optical fibers are used as the LMR supporting coatings. These resonances shift to the red as a function of the external refractive index, enabling the fabrication of robust and highly reproducible wavelength-based optical fiber refractometers. The obtained SnO2-based refractometer shows an average sensitivity of 7198 nm/refractive index unit (RIU) in the range 1.333-1.420 RIU.
  • PublicationOpen Access
    Route towards a label-free optical waveguide sensing platform based on lossy mode resonances
    (IFSA Publishing, 2019) Ruiz Zamarreño, Carlos; Zubiate Orzanco, Pablo; Ozcariz Celaya, Aritz; Elosúa Aguado, César; Socorro Leránoz, Abián Bentor; Urrutia Azcona, Aitor; López Torres, Diego; Acha Morrás, Nerea de; Ascorbe Muruzabal, Joaquín; Vitoria Pascual, Ignacio; Imas González, José Javier; Corres Sanz, Jesús María; Díaz Lucas, Silvia; Hernáez Sáenz de Zaitigui, Miguel; Goicoechea Fernández, Javier; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Del Villar, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua,0011-1365-2017- 000117; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA26
    According to recent market studies of the North American company Allied Market Research, the field of photonic sensors is an emerging strategic field for the following years and it is expected to garner $18 billion by 2021. The integration of micro and nanofabrication technologies in the field of sensors has allowed the development of new technological concepts such as lab-on-a-chip which have achieved extraordinary advances in terms of detection and applicability, for example in the field of biosensors. This continuous development has allowed that equipment consisting of many complex devices that occupied a whole room a few years ago, at present it is possible to handle them in the palm of the hand; that formerly long duration processes are carried out in a matter of milliseconds and that a technology previously dedicated solely to military or scientific uses is available to the vast majority of consumers. The adequate combination of micro and nanostructured coatings with optical fiber sensors has permitted us to develop novel sensing technologies, such as the first experimental demonstration of lossy mode resonances (LMRs) for sensing applications, with more than one hundred citations and related publications in high rank journals and top conferences. In fact, fiber optic LMR-based devices have been proven as devices with one of the highest sensitivity for refractometric applications. Refractive index sensitivity is an indirect and simple indicator of how sensitive the device is to chemical and biological species, topic where this proposal is focused. Consequently, the utilization of these devices for chemical and biosensing applications is a clear opportunity that could open novel and interesting research lines and applications as well as simplify current analytical methodologies. As a result, on the basis of our previous experience with LMR based sensors to attain very high sensitivities, the objective of this paper is presenting the route for the development of label-free optical waveguide sensing platform based on LMRs that enable to explore the limits of this technology for bio-chemosensing applications.