Arregui San Martín, Francisco Javier

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Arregui San Martín

First Name

Francisco Javier

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 24
  • PublicationOpen Access
    Thin film coated D-shaped fiber regenerable biosensor
    (Optica, 2020) Santano Rivero, Desiree; Ciáurriz Gortari, Paula; Tellechea Malda, Edurne; Zubiate Orzanco, Pablo; Socorro Leránoz, Abián Bentor; Del Villar, Ignacio; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    We present a novel covalent functionalization of a D-shape fiber biosensor based on Lossy Mode Resonances. IgG/anti-IgG model is applied to prove the regeneration of the union and thus the re-usability of the sensor.
  • PublicationOpen Access
    Quantum dots coatings inside photonic crystal fibers for temperature sensing
    (IEEE, 2008-12-16) Arigita Lasheras, Jesús; Larrión Zabaleta, Beatriz; Bravo Larrea, Javier; Hernáez Sáenz de Zaitigui, Miguel; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Gobierno de Navarra / Nafarroako Gobernua
    Temperature sensors based on Quantum Dots (QDs) nanofilms deposited on the inner holes of a Photonic Crystal Fiber (PCF) was created using the layer by layer electrostatic self-assembly method. The structure is based on a PCF fiber segment spliced between two Standard Multimode Fibers (MMF) of different diameters. The sensors showed a linear variation of the intensity and wavelength emission for a temperature range from -20 ºC to 70 ºC.
  • PublicationOpen Access
    Fiber-optic pH sensors fabrication based on selective deposition of neutral red
    (IEEE, 2009-01-22) Hernáez Sáenz de Zaitigui, Miguel; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ruiz Zamarreño, Carlos; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this work, a novel application of the electric field directed layer-by-layer self assembly (EFDLA) selective deposition method for the fabrication of optical fiber pH sensors is presented. Here, indium tin oxide (ITO) coated optical fibers have been fabricated via a dip-coating deposition method. These fibers are used as electrodes in the EFDLA protocol in order to deposit selectively the sensitive layer. Neutral Red (NR) colorimetric pH sensitive indicator and the polymers poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) are used in order to obtain a pH sensitive nanostructured coating onto ITO coated optical fibers. The results obtained in this work revealed that the LbL material adsorption on the electrodes can be enhanced or even inhibited when applying a specific direct current voltage between them under some other specific fabrication parameters. Particularly, the response of these sensors to variations of the pH in the surrounding medium was studied when the pH of the solutions used for the fabrication of the films was adjusted to 7.0 and the potential applied between electrodes was set to 2.5 V. These sensors showed fast response time and high repeatability.
  • PublicationOpen Access
    Optical fiber sensors based on gold nanorods embedded in polymeric thin films
    (Elsevier, 2018) Urrutia Azcona, Aitor; Goicoechea Fernández, Javier; Rivero Fuente, Pedro J.; Pildain Lería, Ander; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2
    In this work, we present a study about the generation and analysis of optical resonances caused by gold nanorods (GNRs) embedded in films. GNRs were embedded in polymeric thin films using the Layerby-Layer nanoassembly (LbL) deposition technique. Polymer/GNRs thin films of different thicknesses were deposited on the surface of cladding removed optical fibers for sensing. The spectral responses of the optical fiber sensors were monitored during the build-up of the thin films. The generation of two Localized Surface Plasmon Resonances (LSPRs) associated to the GNRs was observed in thinner coatings. These devices with around 12 polymer/GNRs bilayers were characterized as refractometers, providing an intensity-based sensitivity up to 75.69 dB/RIU. For thicker polymer/GNRs overlays, both LSPRs bands were also generated and, additionally, it was observed a new Lossy Mode Resonance (LMR) band due to modes coupled to the sensitive coating. The dependence of these three resonance bands with the surrounding refractive index was studied. Finally, these sensors were tested in a climatic chamber in the 20-90% relative humidity (RH) range and the LMR showed a good sensitivity to RH changes while the LSPR bands remained very stable in comparison. Results showed an excellent sensitivity of 11.2 nm/%RH for the LMR, confirming the potential of this type of optical fiber sensor based on the combination of LSPRs and LMRs bands.
  • PublicationOpen Access
    A comparative study between SMS interferometers and lossy mode resonace optical fiber devices for sensing applications
    (SPIE, 2015) Socorro Leránoz, Abián Bentor; Hernáez Sáenz de Zaitigui, Miguel; Del Villar, Ignacio; Corres Sanz, Jesús María; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Optical fiber sensors are of great interest due to their intrinsic advantages over electronic sensors. In this work, the sensing characteristics of two different and novel optical fiber devices are compared, after simultaneously depositing a thin-film using the layer-by-layer assembly deposition process. The first one is an SMS structure, formed by splicing two single-mode fiber pigtails on both sides of a coreless multimode fiber segment. This structure induces an interferometric phenomenon that generates several attenuation and transmission bands along the spectrum. These bands are sensitive to variations in the surrounding refractive index, although this sensitivity has been enhanced by a TiO2/PSS thin-film. The other device is a 40 mm uncladded segment of a 200 µm-core multimode optical fiber. When coated by a TiO2/PSS thinfilm, part of the light transmitted into the uncladded core is coupled into the thin-film, generating a lossy mode resonance (LMR). The absorption peaks due to these phenomena red-shift as long as the thin-film thickness increases or the external RI becomes higher. The performance of these devices as refractometers and relative humidity sensors are tested. Results show that the LMR-based sensor is more sensitive in both situations, in spite of its lower sensitivity. Particularly, it presents a 7-fold sensitivity enhancement when measuring surrounding medium refractive index changes and a 10-fold sensitivity enhancement when measuring environmental relative humidity. To our knowledge, this is the first time that a comparative study between SMS and LMR sensors is performed.
  • PublicationOpen Access
    Nanodeposition of materials with complex refractive index in long period fiber gratings
    (IEEE, 2005) Del Villar, Ignacio; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Achaerandio Alvira, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    An overlay of higher refractive index than the cladding is deposited on a Long Period Fiber Grating (LPFG). This permits to improve in a great manner the sensitivity of the device to ambient and overlay refractive index changes. This causes large shifts of the attenuation bands in the transmission spectrum. To obtain a maximum sensitivity for specific refractive indices of the overlay and the ambient, an optimum overlay thickness must be selected. If the refractive index of the overlay is complex there is an additional phenomenon of vanishing of the attenuation bands in the transmission spectrum. This occurs for specific thickness values of the overlay. The problem is analyzed with a numerical method based on LP mode approximation and coupled mode theory. Experimental results are contrasted with theoretical ones
  • PublicationOpen Access
    Etched and nanocoated single-mode multimode single-mode (SMS) fibers for detection of wind turbine gearbox oil degradation
    (IEEE, 2019) Del Villar, Ignacio; Goñi Carnicero, Jaime; Vicente Gómara, Adrián; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua, 2017/PI044
    The application of an etching process in a single-mode multimode single-mode (SMS) fiber allows monitoring the change of refractive index of wind turbine gearbox oil due to temperature and degradation with a limitation at short temperatures, where the transmission and attenuation bands in the optical spectrum fade. The application of a black tin oxide nanocoating solves this issue and allows tuning the refractive index region where the sensitivity is maximum. The SMS was designed for operating at short wavelengths, where the setup is less expensive. The experimental results were contrasted with a theoretical analysis developed with FIMMWAVE, which allowed understanding better the phenomena involved in the experiments.
  • PublicationOpen Access
    Tapered single-mode optical fiber pH sensor based on lossy mode resonances generated by a polymeric thin-film
    (IEEE, 2012) Socorro Leránoz, Abián Bentor; Del Villar, Ignacio; Corres Sanz, Jesús María; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Lossy mode resonances can be generated with certain polymeric nanostructures, such as those obtained with a multilayered assembly of poly(allylamine hydrochloride) and poly (acrylic acid). This coating is adsorbed by the electrostatic self assembly technique onto a tapered single-mode optical fiber, in order to evaluate its performance when detecting pH. According to the results reported in this work, the high sensitivity given by a tapering process in a single-mode optical fiber is increased by the effect of this kind of electromagnetic resonances. Particularly, in a pH range from 4.0 to 6.0 the overall wavelength shift of this sensor reaches 200 nm and the transmission at the resonance wavelengths can fall down to -50 dB. These data provide results which can be taken into account to detect pH with high accuracy.
  • PublicationOpen Access
    Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers
    (IOP Publishing Ltd, 2010) Del Villar, Ignacio; Ruiz Zamarreño, Carlos; Sánchez Zábal, Pedro; Hernáez Sáenz de Zaitigui, Miguel; Fernández Valdivielso, Carlos; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    A comparative study of lossy mode resonances generated by depositing two different materials is presented. The two materials selected are indium tin oxide (ITO) and indium oxide. The two materials present different dielectric dispersion, which leads to the generation of single-peak lossy mode resonances with the ITO coated optical fibers and dual-peak lossy mode resonances with the In2O3 coated optical fibers. The obvious advantage of a dual-peak based measurement in the sensors field is enhanced by a sensitivity increase observed in sensors based on In2O3 if compared with those based on ITO. These characteristics are analyzed both theoretically and experimentally.
  • PublicationOpen Access
    Generation of selective fringes with cascaded long-period gratings
    (IEEE, 2006) Del Villar, Ignacio; Achaerandio Alvira, Miguel; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    The inscription of cascaded long-period gratings of different periods in optical fiber permits us to obtain both narrowband and wideband filters in the same spectrum. If used as an optical transducer, it may permit us to detect with the same device- wide and small parameter changes. The transmission spectra have been simulated using a theoretical model based on LP mode coupling and have been also experimentally demonstrated.