Pérez Sinusía, Ester

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Pérez Sinusía

First Name

Ester

person.page.departamento

Ingeniería Matemática e Informática

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 26
  • PublicationOpen Access
    New series expansions for the ℋ-function of communication theory
    (Taylor & Francis, 2023) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    TheH-function of communication theory plays an important role inthe error rate analysis in digital communication with the presenceof additive white Gaussian noise (AWGN) and generalized multipathfading conditions. In this paper we investigate several convergentand/or asymptotic expansions ofHp(z,b,η)for some limiting valuesof their variables and parameters: large values ofz, large values ofp, small values ofη, and values ofb→1. We provide explicit and/orrecursive algorithms for the computation of the coefficients of theexpansions. Some numerical examples illustrate the accuracy of theapproximations.
  • PublicationOpen Access
    Orthogonal basis with a conicoid first mode for shape specification of optical surfaces
    (Optical Society of America, 2016) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Navarro, Rafael; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza
    A rigorous and powerful theoretical framework is proposed to obtain systems of orthogonal functions (or shape modes) to represent optical surfaces. The method is general so it can be applied to different initial shapes and different polynomials. Here we present results for surfaces with circular apertures when the first basis function (mode) is a conicoid. The system for aspheres with rotational symmetry is obtained applying an appropriate change of variables to Legendre polynomials, whereas the system for general freeform case is obtained applying a similar procedure to spherical harmonics. Numerical comparisons with standard systems, such as Forbes and Zernike polynomials, are performed and discussed.
  • PublicationOpen Access
    The use of two-point Taylor expansions in singular one-dimensional boundary value problems I
    (Elsevier, 2018) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Matematika eta Informatika Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Matemática e Informática
    We consider the second-order linear differential equation (x + 1)y′′ + f(x)y′ + g(x)y = h(x) in the interval (−1, 1) with initial conditions or boundary conditions (Dirichlet, Neumann or mixed Dirichlet-Neumann). The functions f(x), g(x) and h(x) are analytic in a Cassini disk Dr with foci at x = ±1 containing the interval [−1, 1]. Then, the end point of the interval x = −1 may be a regular singular point of the differential equation. The two-point Taylor expansion of the solution y(x) at the end points ±1 is used to study the space of analytic solutions in Dr of the differential equation, and to give a criterion for the existence and uniqueness of analytic solutions of the boundary value problem. This method is constructive and provides the two-point Taylor approximation of the analytic solutions when they exist.
  • PublicationOpen Access
    New series expansions of the 3F2 function
    (2015) López García, José Luis; Pagola Martínez, Pedro Jesús; Pérez Sinusía, Ester; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza
    We can use the power series definition of 3F2(a1, a2, a3; b1, b2; z) to compute this function for z in the unit disk only. In this paper we obtain new expansions of this function that are convergent in larger domains. Some of these expansions involve the polynomial 3F2(a1,−n, a3; b1, b2; z) evaluated at certain points z. Other expansions involve the Gauss hypergeometric function 2F1. The domain of convergence is sometimes a disk, other times a half-plane, other times the region |z|2 < 4|1 − z|. The accuracy of the approximation given by these expansions is illustrated with numerical experiments.
  • PublicationOpen Access
    Orthogonal basis for the optical transfer function
    (Optical Society of America, 2016) Ferreira González, Chelo; López García, José Luis; Navarro, Rafael; Pérez Sinusía, Ester; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza
    We propose systems of orthogonal functions qn to represent optical transfer functions (OTF) characterized by including the diffraction-limited OTF as the first basis function q0 OTF perfect. To this end, we apply a powerful and rigorous theoretical framework based on applying the appropriate change of variables to well-known orthogonal systems. Here we depart from Legendre polynomials for the particular case of rotationally symmetric OTF and from spherical harmonics for the general case. Numerical experiments with different examples show that the number of terms necessary to obtain an accurate linear expansion of the OTF mainly depends on the image quality. In the rotationally symmetric case we obtained a reasonable accuracy with approximately 10 basis functions, but in general, for cases of poor image quality, the number of basis functions may increase and hence affect the efficiency of the method. Other potential applications, such as new image quality metrics are also discussed.
  • PublicationOpen Access
    Generalization of Zernike polynomials for regular portions of circles and ellipses
    (Optical Society of America, 2014) Navarro, Rafael; López García, José Luis; Díaz, José A.; Pérez Sinusía, Ester; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza
    Zernike polynomials are commonly used to represent the wavefront phase on circular optical apertures, since they form a complete and orthonormal basis on the unit circle. Here, we present a generalization of this Zernike basis for a variety of important optical apertures. On the contrary to ad hoc solutions, most of them based on the Gram-Schmidt orthonormalization method, here we apply the diffeomorphism (mapping that has a differentiable inverse mapping) that transforms the unit circle into an angular sector of an elliptical annulus. In this way, other apertures, such as ellipses, rings, angular sectors, etc. are also included as particular cases. This generalization, based on in-plane warping of the basis functions, provides a unique solution and what is more important, it guarantees a reasonable level of invariance of the mathematical properties and the physical meaning of the initial basis functions. Both, the general form and the explicit expressions for most common, elliptical and annular apertures are provided.
  • PublicationOpen Access
    A convergent version of Watson’s lemma for double integrals
    (Taylor & Francis, 2022) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    A modification of Watson’s lemma for Laplace transforms ∞ 0 f(t) e−zt dt was introduced in [Nielsen, 1906], deriving a new asymptotic expansion for large |z| with the extra property of being convergent as well. Inspired in that idea, in this paper we derive asymptotic expansions of two-dimensional Laplace transforms F(x, y) := ∞ 0 ∞ 0 f(t,s) e−xt−ys dt ds for large |x| and |y| that are also convergent. The expansions of F(x, y) are accompanied by error bounds. Asymptotic and convergent expansions of some specialfunctions are given as illustration.
  • PublicationOpen Access
    New recurrence relations for several classical families of polynomials
    (Taylor and Francis, 2021) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this paper, we derive new recurrence relations for the following families of polynomials: nörlund polynomials, generalized Bernoulli polynomials, generalized Euler polynomials, Bernoulli polynomials of the second kind, Buchholz polynomials, generalized Bessel polynomials and generalized Apostol–Euler polynomials. The recurrence relations are derived from a differential equation of first order and a Cauchy integral representation obtained from the generating function of these polynomials.
  • PublicationOpen Access
    On a modifcation of Olver's method: a special case
    (Springer US, 2016) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza
    We consider the asymptotic method designed by Olver (Asymptotics and special functions. Academic Press, New York, 1974) for linear differential equations of the second order containing a large (asymptotic) parameter : xm y −2 y = g(x)y, with m ∈ Z and g continuous. Olver studies in detail the cases m = 2, especially the cases m = 0, ±1, giving the Poincaré-type asymptotic expansions of two independent solutions of the equation. The case m = 2 is different, as the behavior of the solutions for large is not of exponential type, but of power type. In this case, Olver’s theory does not give many details. We consider here the special case m = 2. We propose two different techniques to handle the problem: (1) a modification of Olver’s method that replaces the role of the exponential approximations by power approximations, and (2) the transformation of the differential problem into a fixed point problem from which we construct an asymptotic sequence of functions that converges to the unique solution of the problem. Moreover, we show that this second technique may also be applied to nonlinear differential equations with a large parameter.
  • PublicationEmbargo
    Convergent and asymptotic expansions of the displacement elastodynamic integral in terms of known functions
    (Elsevier, 2025-05-01) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2
    The integral [Formula presented] plays an essential role in the study of several phenomena in the theory of elastodynamics (Ceballos and Prato, 2014). But an exact evaluation of this integral in terms of known functions is not possible. In this paper, we derive an analytic representation of this integral in the form of convergent series of elementary functions and hypergeometric functions. This series have an asymptotic character for either, small values of the variable s, or for small values of the variables r and R. It is derived by using the asymptotic technique designed in Lopez (2008) for Mellin convolution integrals. Some numerical experiments show the accuracy of the approximation supplied by the first few terms of the expansion.