Convergent and asymptotic expansions of the displacement elastodynamic integral in terms of known functions

Consultable a partir de

2027-05-01

Date

2025-05-01

Director

Publisher

Elsevier
Acceso embargado / Sarbidea bahitua dago
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

  • AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-136441NB-I00/ES/ recolecta
Impacto
OpenAlexGoogle Scholar
cited by count

Abstract

The integral [Formula presented] plays an essential role in the study of several phenomena in the theory of elastodynamics (Ceballos and Prato, 2014). But an exact evaluation of this integral in terms of known functions is not possible. In this paper, we derive an analytic representation of this integral in the form of convergent series of elementary functions and hypergeometric functions. This series have an asymptotic character for either, small values of the variable s, or for small values of the variables r and R. It is derived by using the asymptotic technique designed in Lopez (2008) for Mellin convolution integrals. Some numerical experiments show the accuracy of the approximation supplied by the first few terms of the expansion.

Description

Keywords

Asymptotic expansions, Bessel functions, Convergent expansions, Elastodynamic integral

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika / Institute for Advanced Materials and Mathematics - INAMAT2

Faculty/School

Degree

Doctorate program

item.page.cita

Ferreira, C., López, J. L., Pérez Sinusía, E. (2025). Convergent and asymptotic expansions of the displacement elastodynamic integral in terms of known functions. Journal of Computational and Applied Mathematics, 460, 1-9. https://doi.org/10.1016/j.cam.2024.116395.

item.page.rights

© 2024 Elsevier B.V. This manuscript version is made available under the CC-BY-NC-ND 4.0.

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.