Person: Pรฉrez Sinusรญa, Ester
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Pรฉrez Sinusรญa
First Name
Ester
person.page.departamento
Ingenierรญa Matemรกtica e Informรกtica
person.page.instituteName
ORCID
0000-0002-8021-2745
person.page.upna
7326
Name
1 results
Search Results
Now showing 1 - 1 of 1
Publication Open Access Asymptotic approximation of a highly oscillatory integral with application to the canonical catastrophe integrals(Wiley, 2023) Ferreira Gonzรกlez, Chelo; Lรณpez Garcรญa, Josรฉ Luis; Pรฉrez Sinusรญa, Ester; Estadรญstica, Informรกtica y Matemรกticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pรบblica de Navarra / Nafarroako Unibertsitate PublikoaWe consider the highly oscillatory integral ๐น(๐ค) โถ= โซ โ โโ ๐๐๐ค(๐ก๐พ+2+๐๐๐๐ก๐) ๐(๐ก)๐๐ก for large positive values of ๐ค, โ๐ < ๐ โค ๐, ๐พ and ๐ positive integers with 1 โค ๐ โค ๐พ, and ๐(๐ก) an entire function. The standard saddle point method is complicated and we use here a simplified version of this method introduced by Lรณpez et al. We derive an asymptotic approximation of this integral when ๐ค โ +โ for general values of ๐พ and ๐ in terms of elementary functions, and determine the Stokes lines. For ๐ โ 1, the asymptotic behavior of this integral may be classified in four different regions according to the even/odd character of the couple of parameters ๐พ and ๐; the special case ๐=1 requires a separate analysis. As an important application, we consider the family of canonical catastrophe integrals ฮจ๐พ(๐ฅ1, ๐ฅ2,โฆ,๐ฅ๐พ) for large values of one of its variables, say ๐ฅ๐, and bounded values of the remaining ones. This family of integrals may be written in the form ๐น(๐ค) for appropriate values of the parameters ๐ค, ๐ and the function ๐(๐ก). Then, we derive an asymptotic approximation of the family of canonical catastrophe integrals for large |๐ฅ๐|. The approximations are accompanied by several numerical experiments. The asymptotic formulas presented here fill up a gap in the NIST Handbook of Mathematical Functions by Olver et al.