Publication:
Asymptotic approximation of a highly oscillatory integral with application to the canonical catastrophe integrals

Date

2023

Director

Publisher

Wiley
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

Métricas Alternativas

Abstract

We consider the highly oscillatory integral 𝐹(𝑤) ∶= ∫ ∞ −∞ 𝑒𝑖𝑤(𝑡𝐾+2+𝑒𝑖𝜃𝑡𝑝) 𝑔(𝑡)𝑑𝑡 for large positive values of 𝑤, −𝜋 < 𝜃 ≤ 𝜋, 𝐾 and 𝑝 positive integers with 1 ≤ 𝑝 ≤ 𝐾, and 𝑔(𝑡) an entire function. The standard saddle point method is complicated and we use here a simplified version of this method introduced by López et al. We derive an asymptotic approximation of this integral when 𝑤 → +∞ for general values of 𝐾 and 𝑝 in terms of elementary functions, and determine the Stokes lines. For 𝑝 ≠ 1, the asymptotic behavior of this integral may be classified in four different regions according to the even/odd character of the couple of parameters 𝐾 and 𝑝; the special case 𝑝=1 requires a separate analysis. As an important application, we consider the family of canonical catastrophe integrals Ψ𝐾(𝑥1, 𝑥2,…,𝑥𝐾) for large values of one of its variables, say 𝑥𝑝, and bounded values of the remaining ones. This family of integrals may be written in the form 𝐹(𝑤) for appropriate values of the parameters 𝑤, 𝜃 and the function 𝑔(𝑡). Then, we derive an asymptotic approximation of the family of canonical catastrophe integrals for large |𝑥𝑝|. The approximations are accompanied by several numerical experiments. The asymptotic formulas presented here fill up a gap in the NIST Handbook of Mathematical Functions by Olver et al.

Description

Keywords

Asymptotic expansions, Catastrophe integrals, Highly oscillatory integrals, Modified saddle point method

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika / Institute for Advanced Materials and Mathematics - INAMAT2

Faculty/School

Degree

Doctorate program

item.page.cita

Ferreira, C., López, J. L., Pérez Sinusía, E. (2023) Asymptotic approximation of a highly oscillatory integral with application to the canonical catastrophe integrals. Studies in Applied Mathematics, 150(1), 254-276. https://doi.org/10.1111/sapm.12539.

item.page.rights

© 2022 The Authors. Creative Commons Attribution 4.0 International (CC BY 4.0)

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.