Martinikorena Aranburu, Ion

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Martinikorena Aranburu

First Name

Ion

person.page.departamento

Ingeniería Eléctrica y Electrónica

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 5 of 5
  • PublicationOpen Access
    Low cost gaze estimation: knowledge-based solutions
    (IEEE, 2020) Martinikorena Aranburu, Ion; Larumbe Bergera, Andoni; Ariz Galilea, Mikel; Porta Cuéllar, Sonia; Cabeza Laguna, Rafael; Villanueva Larre, Arantxa; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Eye tracking technology in low resolution scenarios is not a completely solved issue to date. The possibility of using eye tracking in a mobile gadget is a challenging objective that would permit to spread this technology to non-explored fields. In this paper, a knowledge based approach is presented to solve gaze estimation in low resolution settings. The understanding of the high resolution paradigm permits to propose alternative models to solve gaze estimation. In this manner, three models are presented: a geometrical model, an interpolation model and a compound model, as solutions for gaze estimation for remote low resolution systems. Since this work considers head position essential to improve gaze accuracy, a method for head pose estimation is also proposed. The methods are validated in an optimal framework, I2Head database, which combines head and gaze data. The experimental validation of the models demonstrates their sensitivity to image processing inaccuracies, critical in the case of the geometrical model. Static and extreme movement scenarios are analyzed showing the higher robustness of compound and geometrical models in the presence of user’s displacement. Accuracy values of about 3◦ have been obtained, increasing to values close to 5◦ in extreme displacement settings, results fully comparable with the state-of-the-art.
  • PublicationOpen Access
    Fast and robust ellipse detection algorithm for head-mounted eye tracking systems
    (Springer, 2018) Martinikorena Aranburu, Ion; Cabeza Laguna, Rafael; Villanueva Larre, Arantxa; Urtasun, Iñaki; Larumbe Bergera, Andoni; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In head-mounted eye tracking systems, the correct detection of pupil position is a key factor in estimating gaze direction. However, this is a challenging issue when the videos are recorded in real-world conditions, due to the many sources of noise and artifacts that exist in these scenarios, such as rapid changes in illumination, reflections, occlusions and an elliptical appearance of the pupil. Thus, it is an indispensable prerequisite that a pupil detection algorithm is robust in these challenging conditions. In this work, we present one pupil center detection method based on searching the maximum contribution point to the radial symmetry of the image. Additionally, two different center refinement steps were incorporated with the aim of adapting the algorithm to images with highly elliptical pupil appearances. The performance of the proposed algorithm is evaluated using a dataset consisting of 225,569 head-mounted annotated eye images from publicly available sources. The results are compared with the better algorithm found in the bibliography, with our algorithm being shown as superior.
  • PublicationOpen Access
    Detección robusta de pupila en entornos no controlados
    (2017) Martinikorena Aranburu, Ion; Villanueva Larre, Arantxa; Cabeza Laguna, Rafael; Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación; Telekomunikazio eta Industria Ingeniarien Goi Mailako Eskola Teknikoa
    En los sistemas de seguimiento de la mirada o eye tracking de tipo head-mounted la detección de pupila es un factor fundamental a la hora de estimar la dirección de mirada. A pesar de obtenerse buenos resultados en condiciones de laboratorio, esto no resulta sencillo en condiciones reales de uso debido a las numerosas complicaciones que surgen en dichos escenarios, tales como constantes cambios en la iluminación, reflejos, oclusiones y apariencia elíptica de la pupila etc. Por ello, es imprescindible disponer de algoritmos de detección de pupila robustos frente a dichas adversidades. Se presentan en este trabajo tres algoritmos de detección de pupila basados en buscar el punto de mayor contribución a la simetría radial de la imagen. En dos de ellos se incorporan dos etapas de refinado de centro para adaptar el método a pupilas de apariencia elíptica. La precisión en la detección es evaluada sobre un total de 225.569 imágenes de acceso público cuyo centro ha sido marcado de manera manual por los autores de las mismas. Los resultados son comparados con los obtenidos por el mejor de los algoritmos encontrados en la bibliografía.
  • PublicationOpen Access
    Introducing I2Head database
    (ACM (Association for Computing Machinery), 2018) Martinikorena Aranburu, Ion; Cabeza Laguna, Rafael; Villanueva Larre, Arantxa; Porta Cuéllar, Sonia; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    I2Head database has been created with the aim to become an optimal reference for low cost gaze estimation. It exhibits the following outstanding characteristics: it takes into account key aspects of low resolution eye tracking technology; it combines images of users gazing at different grids of points from alternative positions with registers of user's head position and it provides calibration information of the camera and a simple 3D head model for each user. Hardware used to build the database includes a 6D magnetic sensor and a webcam. A careful calibration method between the sensor and the camera has been developed to guarantee the accuracy of the data. Different sessions have been recorded for each user including not only static head scenarios but also controlled displacements and even free head movements. The database is an outstanding framework to test both gaze estimation algorithms and head pose estimation methods.
  • PublicationOpen Access
    Frailty assessment based on trunk kinematic parameters during walking
    (BioMed Central, 2015) Martínez Ramírez, Alicia; Martinikorena Aranburu, Ion; Gómez Fernández, Marisol; Lecumberri Villamediana, Pablo; Millor Muruzábal, Nora; Rodríguez Mañas, Leocadio; García García, Francisco José; Izquierdo Redín, Mikel; Matemáticas; Matematika
    Background: Physical frailty has become the center of attention of basic, clinical and demographic research due to its incidence level and gravity of adverse outcomes with age. Frailty syndrome is estimated to affect 20 % of the population older than 75 years. Thus, one of the greatest current challenges in this field is to identify parameters that can discriminate between vulnerable and robust subjects. Gait analysis has been widely used to predict frailty. The aim of the present study was to investigate whether a collection of parameters extracted from the trunk acceleration signals could provide additional accurate information about frailty syndrome. Methods: A total of 718 subjects from an elderly population (319 males, 399 females; age: 75.4 ± 6.1 years, mass: 71.8 ± 12.4 kg, height: 158 ± 6 cm) volunteered to participate in this study. The subjects completed a 3-m walk test at their own gait velocity. Kinematic data were acquired from a tri-axial inertial orientation tracker. Findings: The spatio-temporal and frequency parameters measured in this study with an inertial sensor are related to gait disorders and showed significant differences among groups (frail, pre-frail and robust). A selection of those parameters improves frailty classification obtained to gait velocity, compared to classification model based on gait velocity solely. Interpretation: Gait parameters simultaneously used with gait velocity are able to provide useful information for a more accurate frailty classification. Moreover, this technique could improve the early detection of pre-frail status, allowing clinicians to perform measurements outside of a laboratory environment with the potential to prescribe a treatment for reversing their physical decline.