Person:
González García, Esther

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

González García

First Name

Esther

person.page.departamento

Ciencias

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 26
  • PublicationOpen Access
    Root system of Medicago sativa and Medicago truncatula: drought effects on carbon metabolism
    (Springer, 2021-03-18) Echeverría Obanos, Andrés; González García, Esther; Ciencias; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Aims: Here, we assess the differential impact of drought on root carbon metabolism in the widely cultivated alfalfa (Medicago sativa, Ms) and the model legume Medicago truncatula (Mt). Understanding how carbon allocation is regulated under drought stress conditions is a central issue to improving alfalfa productivity under future climate change scenarios. Methods: Alfalfa and Medicago truncatula were compared under water deficit conditions. Root carbon metabolism of the taproot and fibrous roots was analysed. M. truncatula drought tolerance variability was compared to that of alfalfa using six accessions of the Medicago Hapmap project. The prominent taproot is much less developed in M. truncatula than in alfalfa with the former exhibiting an extensive fibrous root system. Results: In both examined Medicago species the taproot contained the major pools of soluble protein, sucrose and pinitol, whereas the major pools of hexoses and carbon metabolism enzymes appeared to be in the fibrous roots. Under water-deficit conditions, the response of M. sativa strongly differed from that of M. truncatula at the root level. Conclusions: Water deficit conditions differentially modulate the root carbon metabolism of M. sativa and M. truncatula. Mt maintained a more active carbon metabolism in the fibRs, as sucrose, myo-inositol and pinitol accumulated to cope with the water deficit (WD). Conversely, the root system of Ms did not accumulate cyclitols and carbon metabolism was more severely affected under water deficit conditions. This differentially exerted control may determine the drought response of these two close relatives.
  • PublicationOpen Access
    Estudio de prospectiva, análisis y propuesta de participación y colaboración de la Administración Foral de Navarra con las redes, plataformas e iniciativas de ciencia ciudadana
    (2016) González García, Esther; Peralta de Andrés, Francisco Javier; Imbert Rodríguez, Bosco; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    El objetivo de este trabajo es analizar las redes y plataformas de ciencia ciudadana existentes con el fin de realizar una propuesta para su implementación en Navarra por parte de la Administración Ambiental; para ello se revisa cómo abordan otras administraciones la ciencia ciudadana a distintos niveles y las posibles formas de participación o colaboración de la Administración.
  • PublicationOpen Access
    Drought stress provokes the down-regulation of methionine and ethylene biosynthesis pathways in Medicago truncatula roots and nodules
    (Wiley, 2014) Larrainzar Rodríguez, Estíbaliz; Molenaar, Johanna A.; Wienkoop, Stefanie; Gil Quintana, Erena; Alibert, Bénédicte; Limami, Anis M.; Arrese-Igor Sánchez, César; González García, Esther; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, 735/2008
    Symbiotic nitrogen fixation is one of the first physiological processes inhibited in legume plants under water-deficit conditions. Despite the progress made in the last decades, the molecular mechanisms behind this regulation are not fully understood yet. Recent proteomic work carried out in the model legume Medicago truncatula provided the first indications of a possible involvement of nodule methionine (Met) biosynthesis and related pathways in response to waterdeficit conditions. To better understand this involvement, the drought-induced changes in expression and content of enzymes involved in the biosynthesis of Met, S-adenosyl-Lmethionine (SAM) and ethylene in M. truncatula root and nodules were analyzed using targeted approaches. Nitrogenfixing plants were subjected to a progressive water deficit and a subsequent recovery period. Besides the physiological characterization of the plants,the content of total sulphur,sulphate and main S-containing metabolites was measured. Results presented here show that S availability is not a limiting factor in the drought-induced decline of nitrogen fixation rates in M. truncatula plants and provide evidences for a downregulation of the Met and ethylene biosynthesis pathways in roots and nodules in response to water-deficit conditions.
  • PublicationOpen Access
    Long-term mannitol-induced osmotic stress leads to stomatal closure, carbohydrate accumulation and changes in leaf elasticity in Phaselous vulgaris leaves
    (Academic Journals, 2010) Sassi, Sameh; Aydi, Samir; Hessini, Kamel; González García, Esther; Arrese-Igor Sánchez, César; Abdelly, Chedly; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    The effect of long-term osmotic stress was investigated in leaves of two common bean lines, with contrasting tolerance: Flamingo (tolerant) and coco blanc (sensitive). Water relations, organic solute, ion accumulation and amino acids content as well as osmotic adjustment (OA) were studied during an extended exposure to osmotic stress. Osmotic stress was applied by means of 50 mM mannitol for 15 days. At the end of the stress period, both osmotic potential at full turgor (psi(100)) and at turgor loss point (psi(0)) decreased significantly in stressed plants compared with the control. The decrease being greater in the sensitive line, showed a greater OA compared with flamingo. Sugars contents increased in stressed plants and seem to be the major components of osmotic adjustment in stressed common bean leaves. The increase was more marked in coco blanc. Osmotic stress tolerance could thus not be associated with higher OA. The possible role of decreased leaf cell elasticity (epsilon(max)) is discussed in relation to osmotic stress tolerance in this species.
  • PublicationOpen Access
    Use of recombinant iron-superoxide dismutase as a marker of nitrative stress
    (Elservier, 2008-04-20) Larrainzar Rodríguez, Estíbaliz; Urarte Rodríguez, Estíbaliz; Auzmendi, Iñigo; Ariz Arnedo, Idoia; Arrese-Igor Sánchez, César; González García, Esther; Morán Juez, José Fernando; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua, 57/2007
    Superoxide dismutases (SODs; EC 1.15.1.1) are a group of metalloenzymes which are essential to protect cells under aerobic conditions. In biological systems, it has been reported that SODs and other proteins are susceptible to be attacked by peroxynitrite (ONOO-) which can be originated from the reaction of nitric oxide with superoxide radical. ONOO- is a strong oxidant molecule capable of nitrating peptides and proteins at the phenyl side chain of the tyrosine residues. In the present work, bovine serum albumin (BSA) and recombinant iron¿superoxide dismutase from the plant cowpea (Vu_FeSOD) are used as target molecules to estimate ONOO- production. The method employs the compound SIN-1, which simultaneously generates -NO and O2- in aerobic aqueous solutions. First, assay conditions were optimized incubating BSA with different concentrations of SIN-1, and at a later stage, the effect on the tyrosine nitration and catalytic activity of Vu_FeSOD was examined by in-gel activity and spectrophotometric assays. Both BSA and Vu_FeSOD are nitrated in a dose-dependent manner, and, at least in BSA nitration, the reaction seems to be metal catalyzed.
  • PublicationOpen Access
    Unlocking nature's drought resilience: a focus on the parsimonious root phenotype and specialised root metabolism in wild Medicago populations
    (Springer Nature, 2024-10-28) Calleja Satrustegui, Aitziber; Echeverría Obanos, Andrés; Ariz Arnedo, Idoia; Peralta de Andrés, Francisco Javier; González García, Esther; Ciencias; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; Unviersidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Background and aims: crop wild relatives, exposed to strong natural selection, exhibit effective tolerance traits against stresses. While an aggressive root proliferation phenotype has long been considered advantageous for a range of stresses, it appears to be counterproductive under drought due to its high metabolic cost. Recently, a parsimonious root phenotype, metabolically more efficient, has been suggested to be better adapted to semiarid environments, although it is not clear that this phenotype is a trait exhibited by crop wild relatives. Methods: firstly, we analysed the root phenotype and carbon metabolism in four Medicago crop wild relatives adapted to a semiarid environment and compared them with the cultivated M. truncatula Jemalong (A17). Secondly, we exposed the cultivated (probably the least adapted genotype to aridity) and the wild (the most common one in arid zones) M. truncatula genotypes to water deficit. The carbon metabolism response in different parts of their roots was analysed. Results: a reduced carbon investment per unit of root length was a common trait in the four wild genotypes, indicative of an evolution towards a parsimonious root phenotype. During the water deficit experiment, the wild M. truncatula showed higher tolerance to drought, along with a superior ability of its taproot to partition sucrose and enhanced capacity of its fibrous roots to maintain sugar homeostasis. Conclusion: a parsimonious root phenotype and the spatial specialization of root carbon metabolism represent two important drought tolerance traits. This work provides relevant findings to understand the response of Medicago species roots to water deficit.
  • PublicationOpen Access
    Potencialidades del frijol caupí para la resiliencia al cambio climático en sistemas agrícolas locales
    (2022) Santana-Baños, Yoerlandy; González García, Esther; Ariz Arnedo, Idoia; Carrodeguas Díaz, Sergio; Ciencias; Zientziak
    Las evidencias científicas sugieren tres usos fundamentales del frijol caupí, con agro-ecológicas y beneficios productivos, sociales y ambientales en los sistemas agrícolas locales; sin embargo, su rendimiento a nivel mundial y en América no experimenta crecimiento en los últimos años. Los resultados obtenidos en Pinar del Río, Cuba, sugieren la posibilidad de emplearlo como alternativa para la producción de grano pero debe fomentarse, desde la ciencia, la innovación y las instituciones y órganos de decisión a nivel local, la cultura de producción y consumo de esta leguminosa para su aprovechamiento en la sostenibilidad agrícola de los agro-ecosistemas.
  • PublicationOpen Access
    Physiological responses of legume nodules to drought
    (Global Science Books, 2011) Arrese-Igor Sánchez, César; González García, Esther; Marino Bilbao, Daniel; Ladrera Fernández, Rubén; Larrainzar Rodríguez, Estíbaliz; Gil Quintana, Erena; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Legumes include important agricultural crops, as their high protein content is of primary importance for human food and animal feed. In addition, the ability of most of them to establish symbiotic relationships with soil bacteria allows them to obtain their N requirements from nitrogen fixation in nodules and, therefore, avoids the use of nitrogen fertilizers. Thus, legumes are also essential to improve the soil fertility and quality of agricultural lands and to reclaim eroded or barren areas, making them crucial for agricultural and environmental sustainability. However, legume nitrogen fixation in crop species is very sensitive to environmental constraints and drought, in particular. The present contribution reviews our current knowledge on the processes involved in this inhibition, with particular emphasis on oxygen, nitrogen and carbon physiology. Emerging aspects such as oxidative damage, C/N interactions and sulphur metabolism together with future prospects are also discussed.
  • PublicationOpen Access
    Drought stress tolerance in plants
    (MDPI, 2023) González García, Esther; Ciencias; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB
    The current climate change scenario is accelerating degradation, desertification, and salinisation: all destructive processes that are negatively impacting arable lands and food production. This is particularly important when considering how the world population shows a marked positive trend. This scenario leads to flooding and decreasing water quality, but also to a decrease in the availability of water resources in some regions. More than ever, drought is a significant threat to agriculture worldwide. This Special Issue focuses on recent advances in the mechanisms involved in the drought tolerance of crop plants, with particular attention to the role of the root tissue and shoot¿root interactions. In addition to drought, it considers other abiotic stresses involving water deficit stress at the cell level and their interactions with drought. The Special Issue includes a review paper and a collection of scientific papers that approach drought stress in cereals, legumes, and trees, combining studies in cultivated, wild, and model plants. Overall, this issue remarks the role of transcriptions factors (bHLH, NAC, HD-ZIP III), leucine-rich repeat receptor-like kinases, cytochrome P450 monooxygenases, and U-box E3 ligases in drought stress responses at different levels. In addition, the interaction between plant nutrition and drought stress responses is approached with a physiological strategy.
  • PublicationOpen Access
    Physiological and biochemical characterization of rootlets response to salt stress in two Medicago truncatula Gaertn. ecotypes
    (Japanese Society for Root Research, 2018) Amouri, Adel Amar; González García, Esther; Aoul, Seghir Hadjadj; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Legumes are very important plants both ecologically and agriculturally because they are able to interact symbiotically with rhizobia for biological nitrogen fixation and soil fertilization. Medicago truncatula Gaertn. is an important model legume rich in protein. Salinity represents, today, the major cause of land degradation and crop productivity limitation around the world and affects physiology and metabolism in legumes. In this study, we analyzed the physiological and biochemical responses of rootlets in two contrasting ecotypes of Medicago truncatula (Tru 131, tolerant and Jemalong, sensitive) to different level of NaCl, (68, 102 and 137 mM). Results showed that the tolerant ecotype has a lower water potential than Jemalong. Root protein content of Tru 131 was decreased than Jemalong, this can be explained by accumulation of protein oxidation in the sensitive genotype. Moreover, NaCl increased guaiacol peroxidase activity GPX in rootlets of Tru 131, this enzyme has a protective role against the molecules ROS accumulated during oxidative stress. On the other hand, under salt stress the total content of ascorbate (ASC + DHA) and Glutathione (GSH + GSSG) was increased in the tolerant genotype Tru 131 compared to Jemalong. These results show how the tolerant genotype activate the antioxidative defense system at root level against damages caused by oxidative stress under salinity.