González García, Esther

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

González García

First Name

Esther

person.page.departamento

Ciencias

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 26
  • PublicationOpen Access
    Potencialidades del frijol caupí para la resiliencia al cambio climático en sistemas agrícolas locales
    (2022) Santana-Baños, Yoerlandy; González García, Esther; Ariz Arnedo, Idoia; Carrodeguas Díaz, Sergio; Ciencias; Zientziak
    Las evidencias científicas sugieren tres usos fundamentales del frijol caupí, con agro-ecológicas y beneficios productivos, sociales y ambientales en los sistemas agrícolas locales; sin embargo, su rendimiento a nivel mundial y en América no experimenta crecimiento en los últimos años. Los resultados obtenidos en Pinar del Río, Cuba, sugieren la posibilidad de emplearlo como alternativa para la producción de grano pero debe fomentarse, desde la ciencia, la innovación y las instituciones y órganos de decisión a nivel local, la cultura de producción y consumo de esta leguminosa para su aprovechamiento en la sostenibilidad agrícola de los agro-ecosistemas.
  • PublicationOpen Access
    Drought stress causes a reduction in the biosynthesis of ascorbic acid in soybean plants
    (Frontiers Media, 2017) Seminario Huárriz, Amaia; Song, Li; Zulet González, Amaia; Nguyen, Henry T.; González García, Esther; Larrainzar Rodríguez, Estíbaliz; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; Gobierno de Navarra / Nafarroako Gobernua, 2016/PI013; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, 1287/2011
    Drought provokes a number of physiological changes in plants including oxidative damage. Ascorbic acid (AsA), also known as vitamin C, is one of the most abundant water-soluble antioxidant compound present in plant tissues. However, little is known on the regulation of AsA biosynthesis under drought stress conditions. In the current work we analyze the effects of water deficit on the biosynthesis of AsA by measuring its content, in vivo biosynthesis and the expression level of genes in the Smirnoff-Wheeler pathway in one of the major legume crop, soybean (Glycine max L. Merr). Since the pathway has not been described in legumes, we first searched for the putative orthologous genes in the soybean genome. We observed a significant genetic redundancy, with multiple genes encoding each step in the pathway. Based on RNA-seq analysis, expression of the complete pathway was detected not only in leaves but also in root tissue. Putative paralogous genes presented differential expression patterns in response to drought, suggesting the existence of functional specialization mechanisms. We found a correlation between the levels of AsA and GalLDH biosynthetic rates in leaves of drought-stressed soybean plants. However, the levels of GalLDH transcripts did not show significant differences under water deficit conditions. Among the other known regulators of the pathway, only the expression of VTC1 genes correlated with the observed decline in AsA in leaves.
  • PublicationOpen Access
    Editorial: Drought stress in legumes
    (Frontiers Media, 2022) Furlan, Ana Laura; González García, Esther; Roy Choudhury, Swarup; Signorelli, Santiago; Institute for Multidisciplinary Research in Applied Biology - IMAB; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Plants are challenged by diverse environmental constraints, among which drought stress is increasingly important. Meteorological models predict an increase in the areas prone to drought in the future. Legumes are important sources of fiber, oils, and protein, constituting an essential amenity in the global economy. Additionally, legumes contribute to nitrogen input in the biosphere due to their ability to establish symbiotic interactions with diazotrophs, collectively named rhizobia. Therefore, efforts to decipher the molecular, metabolic, physiological, and agronomic responses are crucial contributing novel strategies to aid drought tolerance in legumes. This Research Topic contains articles either providing new findings or discussing the latest research concerning drought research in legumes, including one mini-review on soybean tolerance to drought (Arya et al.) and seven original research papers dealing with strategies to confer drought tolerance such as priming (Zhou et al.); studies on intraspecific variation in traits associated with drought tolerance (Prince et al.); the analysis of water use efficiency under terminal drought (Polania et al.); and the contribution of a legume dehydrin to drought tolerance (Sun et al.); the functional characterization of a LOX gene family (Mou et al.); the functional analysis of a soybean APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) (Wang et al.); and a study on AP2/ERF gene family in a tolerant desert legume (Zhao et al.).
  • PublicationOpen Access
    Drought stress provokes the down-regulation of methionine and ethylene biosynthesis pathways in Medicago truncatula roots and nodules
    (Wiley, 2014) Larrainzar Rodríguez, Estíbaliz; Molenaar, Johanna A.; Wienkoop, Stefanie; Gil Quintana, Erena; Alibert, Bénédicte; Limami, Anis M.; Arrese-Igor Sánchez, César; González García, Esther; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, 735/2008
    Symbiotic nitrogen fixation is one of the first physiological processes inhibited in legume plants under water-deficit conditions. Despite the progress made in the last decades, the molecular mechanisms behind this regulation are not fully understood yet. Recent proteomic work carried out in the model legume Medicago truncatula provided the first indications of a possible involvement of nodule methionine (Met) biosynthesis and related pathways in response to waterdeficit conditions. To better understand this involvement, the drought-induced changes in expression and content of enzymes involved in the biosynthesis of Met, S-adenosyl-Lmethionine (SAM) and ethylene in M. truncatula root and nodules were analyzed using targeted approaches. Nitrogenfixing plants were subjected to a progressive water deficit and a subsequent recovery period. Besides the physiological characterization of the plants,the content of total sulphur,sulphate and main S-containing metabolites was measured. Results presented here show that S availability is not a limiting factor in the drought-induced decline of nitrogen fixation rates in M. truncatula plants and provide evidences for a downregulation of the Met and ethylene biosynthesis pathways in roots and nodules in response to water-deficit conditions.
  • PublicationOpen Access
    Learning plant biodiversity in nature: the use of the citizen–science platform iNaturalist as a collaborative tool in secondary education
    (MDPI, 2021) Echeverría Obanos, Andrés; Ariz Arnedo, Idoia; Moreno Echeverría, Judit; Peralta de Andrés, Francisco Javier; González García, Esther; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; Ciencias; Gobierno de Navarra / Nafarroako Gobernua, CENEDUCA3/2019
    Biodiversity is a concept of great scientific interest and social value studied in different subjects of the secondary education curriculum. Citizen–science programs may contribute to increasing the engagement of students when studying biodiversity. This work aimed to explore the use of the citizen–science platform iNaturalist as a complement of the elaboration of herbaria in an outdoor activity for 4th course 16-year-old students in the Basaula Reserve. The platform iNaturalist was chosen for its suitability to develop collaborative projects in an educational context. The Basaula project was created and 122 students were trained to record plant species in an outdoor activity. A total of 32 species were recorded, among them the most abundant were beech (Fagus sylvatica) and holm oak (Quercus ilex). The students positively evaluated their experience, highlighting its adequacy to record biodiversity data and make a virtual herbarium. Students valued the innovative character of iNaturalist and its usefulness for research but also the opportunity to integrate mobile devices in school education. We concluded that iNaturalist is a valuable tool to carry out collaborative projects dealing with biodiversity in secondary education.
  • PublicationOpen Access
    Split‐root systems applied to the study of the legume‐rhizobial symbiosis: what have we learned?
    (Wiley, 2014) Larrainzar Rodríguez, Estíbaliz; Gil Quintana, Erena; Arrese-Igor Sánchez, César; González García, Esther; Marino Bilbao, Daniel; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Split-root system (SRS) approaches allow the differential treatment of separate and independent root systems, while sharing a common aerial part. As such, SRS is a useful tool for the discrimination of systemic (shoot origin) versus local (root/nodule origin) regulation mechanisms. This type of approach is particularly useful when studying the complex regulatory mechanisms governing the symbiosis established between legumes and Rhizobium bacteria. The current work provides an overview of the main insights gained from the application of SRS approaches to understand how nodule number (nodulation autoregulation) and nitrogen fixation are controlled both under non-stressful conditions and in response to a variety of stresses. Nodule number appears to be mainly controlled at the systemic level through a signal which is produced by nodule/root tissue, translocated to the shoot, and transmitted back to the root system, involving shoot Leu-rich repeat receptor-like kinases. In contrast, both local and systemic mechanisms have been shown to operate for the regulation of nitrogenase activity in nodules. Under drought and heavy metal stress, the regulation is mostly local, whereas the application of exogenous nitrogen seems to exert a regulation of nitrogen fixation both at the local and systemic levels.
  • PublicationOpen Access
    Functional analysis of the taproot and fibrous roots of Medicago truncatula: sucrose and proline catabolism primary response to water deficit
    (Elsevier, 2019) Castañeda Presa, Verónica; Peña, Marlon de la; Azcárate Górriz, Lidia; Aranjuelo Michelena, Iker; González García, Esther; Ciencias; Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Root performance represents a target factor conditioning plant development under drought conditions. Moreover, recent root phenotyping studies remark relevant differences on functionality of the different root types. However, despite its relevance, the performance of different types of roots such as primary/taproot (tapR) and lateral/fibrous roots (fibR) under water stress conditions is largely unknown. In the current study, the impact of water stress on target C and N metabolism (namely sucrose and proline) processes were characterized in tapR and fibR of Medicago truncatula plants exposed to different water stress severity regimes (moderate versus severe). While both root types exhibit some common responses to face water stress, the study highlighted important physiological and metabolic differences between them. The tapR proved to have an essential role on carbon and nitrogen partitioning rather than just on storage. Moreover, this root type showed a higher resilience towards water deficit stress. Sucrose metabolization at sucrose synthase level was early blocked in this tissue together with a selective accumulation of some amino acids such as proline and branched chain amino adds, which may act as alternative carbon sources under water deficit stress conditions. The decline in respiration, despite the over-accumulation of carbon compounds, suggests a modulation at sucrose cleavage level by sucrose synthase and invertase. These data not only provide new information on the carbon and nitrogen metabolism modulation upon water deficit stress but also on the different role, physiology, and metabolism of the taproot and fibrous roots. In addition, obtained results highlight the fact that both root types show distinct performance under water deficit stress; this factor can be of great relevance to improve breeding programs for increasing root efficiency under adverse conditions.
  • PublicationOpen Access
    Unlocking nature's drought resilience: a focus on the parsimonious root phenotype and specialised root metabolism in wild Medicago populations
    (Springer Nature, 2024-10-28) Calleja Satrustegui, Aitziber; Echeverría Obanos, Andrés; Ariz Arnedo, Idoia; Peralta de Andrés, Francisco Javier; González García, Esther; Ciencias; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; Unviersidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Background and aims: crop wild relatives, exposed to strong natural selection, exhibit effective tolerance traits against stresses. While an aggressive root proliferation phenotype has long been considered advantageous for a range of stresses, it appears to be counterproductive under drought due to its high metabolic cost. Recently, a parsimonious root phenotype, metabolically more efficient, has been suggested to be better adapted to semiarid environments, although it is not clear that this phenotype is a trait exhibited by crop wild relatives. Methods: firstly, we analysed the root phenotype and carbon metabolism in four Medicago crop wild relatives adapted to a semiarid environment and compared them with the cultivated M. truncatula Jemalong (A17). Secondly, we exposed the cultivated (probably the least adapted genotype to aridity) and the wild (the most common one in arid zones) M. truncatula genotypes to water deficit. The carbon metabolism response in different parts of their roots was analysed. Results: a reduced carbon investment per unit of root length was a common trait in the four wild genotypes, indicative of an evolution towards a parsimonious root phenotype. During the water deficit experiment, the wild M. truncatula showed higher tolerance to drought, along with a superior ability of its taproot to partition sucrose and enhanced capacity of its fibrous roots to maintain sugar homeostasis. Conclusion: a parsimonious root phenotype and the spatial specialization of root carbon metabolism represent two important drought tolerance traits. This work provides relevant findings to understand the response of Medicago species roots to water deficit.
  • PublicationOpen Access
    Use of recombinant iron-superoxide dismutase as a marker of nitrative stress
    (Elservier, 2008-04-20) Larrainzar Rodríguez, Estíbaliz; Urarte Rodríguez, Estíbaliz; Auzmendi, Iñigo; Ariz Arnedo, Idoia; Arrese-Igor Sánchez, César; González García, Esther; Morán Juez, José Fernando; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua, 57/2007
    Superoxide dismutases (SODs; EC 1.15.1.1) are a group of metalloenzymes which are essential to protect cells under aerobic conditions. In biological systems, it has been reported that SODs and other proteins are susceptible to be attacked by peroxynitrite (ONOO-) which can be originated from the reaction of nitric oxide with superoxide radical. ONOO- is a strong oxidant molecule capable of nitrating peptides and proteins at the phenyl side chain of the tyrosine residues. In the present work, bovine serum albumin (BSA) and recombinant iron¿superoxide dismutase from the plant cowpea (Vu_FeSOD) are used as target molecules to estimate ONOO- production. The method employs the compound SIN-1, which simultaneously generates -NO and O2- in aerobic aqueous solutions. First, assay conditions were optimized incubating BSA with different concentrations of SIN-1, and at a later stage, the effect on the tyrosine nitration and catalytic activity of Vu_FeSOD was examined by in-gel activity and spectrophotometric assays. Both BSA and Vu_FeSOD are nitrated in a dose-dependent manner, and, at least in BSA nitration, the reaction seems to be metal catalyzed.
  • PublicationOpen Access
    Root system of Medicago sativa and Medicago truncatula: drought effects on carbon metabolism
    (Springer, 2021-03-18) Echeverría Obanos, Andrés; González García, Esther; Ciencias; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Aims: Here, we assess the differential impact of drought on root carbon metabolism in the widely cultivated alfalfa (Medicago sativa, Ms) and the model legume Medicago truncatula (Mt). Understanding how carbon allocation is regulated under drought stress conditions is a central issue to improving alfalfa productivity under future climate change scenarios. Methods: Alfalfa and Medicago truncatula were compared under water deficit conditions. Root carbon metabolism of the taproot and fibrous roots was analysed. M. truncatula drought tolerance variability was compared to that of alfalfa using six accessions of the Medicago Hapmap project. The prominent taproot is much less developed in M. truncatula than in alfalfa with the former exhibiting an extensive fibrous root system. Results: In both examined Medicago species the taproot contained the major pools of soluble protein, sucrose and pinitol, whereas the major pools of hexoses and carbon metabolism enzymes appeared to be in the fibrous roots. Under water-deficit conditions, the response of M. sativa strongly differed from that of M. truncatula at the root level. Conclusions: Water deficit conditions differentially modulate the root carbon metabolism of M. sativa and M. truncatula. Mt maintained a more active carbon metabolism in the fibRs, as sucrose, myo-inositol and pinitol accumulated to cope with the water deficit (WD). Conversely, the root system of Ms did not accumulate cyclitols and carbon metabolism was more severely affected under water deficit conditions. This differentially exerted control may determine the drought response of these two close relatives.