Person: González García, Esther
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
González García
First Name
Esther
person.page.departamento
Ciencias
person.page.instituteName
IMAB. Research Institute for Multidisciplinary Applied Biology
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
26 results
Search Results
Now showing 1 - 10 of 26
Publication Open Access Physiological responses of legume nodules to drought(Global Science Books, 2011) Arrese-Igor Sánchez, César; González García, Esther; Marino Bilbao, Daniel; Ladrera Fernández, Rubén; Larrainzar Rodríguez, Estíbaliz; Gil Quintana, Erena; Ciencias del Medio Natural; Natura Ingurunearen ZientziakLegumes include important agricultural crops, as their high protein content is of primary importance for human food and animal feed. In addition, the ability of most of them to establish symbiotic relationships with soil bacteria allows them to obtain their N requirements from nitrogen fixation in nodules and, therefore, avoids the use of nitrogen fertilizers. Thus, legumes are also essential to improve the soil fertility and quality of agricultural lands and to reclaim eroded or barren areas, making them crucial for agricultural and environmental sustainability. However, legume nitrogen fixation in crop species is very sensitive to environmental constraints and drought, in particular. The present contribution reviews our current knowledge on the processes involved in this inhibition, with particular emphasis on oxygen, nitrogen and carbon physiology. Emerging aspects such as oxidative damage, C/N interactions and sulphur metabolism together with future prospects are also discussed.Publication Open Access Root system of Medicago sativa and Medicago truncatula: drought effects on carbon metabolism(Springer, 2021-03-18) Echeverría Obanos, Andrés; González García, Esther; Ciencias; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMABAims: Here, we assess the differential impact of drought on root carbon metabolism in the widely cultivated alfalfa (Medicago sativa, Ms) and the model legume Medicago truncatula (Mt). Understanding how carbon allocation is regulated under drought stress conditions is a central issue to improving alfalfa productivity under future climate change scenarios. Methods: Alfalfa and Medicago truncatula were compared under water deficit conditions. Root carbon metabolism of the taproot and fibrous roots was analysed. M. truncatula drought tolerance variability was compared to that of alfalfa using six accessions of the Medicago Hapmap project. The prominent taproot is much less developed in M. truncatula than in alfalfa with the former exhibiting an extensive fibrous root system. Results: In both examined Medicago species the taproot contained the major pools of soluble protein, sucrose and pinitol, whereas the major pools of hexoses and carbon metabolism enzymes appeared to be in the fibrous roots. Under water-deficit conditions, the response of M. sativa strongly differed from that of M. truncatula at the root level. Conclusions: Water deficit conditions differentially modulate the root carbon metabolism of M. sativa and M. truncatula. Mt maintained a more active carbon metabolism in the fibRs, as sucrose, myo-inositol and pinitol accumulated to cope with the water deficit (WD). Conversely, the root system of Ms did not accumulate cyclitols and carbon metabolism was more severely affected under water deficit conditions. This differentially exerted control may determine the drought response of these two close relatives.Publication Open Access Estudio de prospectiva, análisis y propuesta de participación y colaboración de la Administración Foral de Navarra con las redes, plataformas e iniciativas de ciencia ciudadana(2016) González García, Esther; Peralta de Andrés, Francisco Javier; Imbert Rodríguez, Bosco; Ciencias del Medio Natural; Natura Ingurunearen ZientziakEl objetivo de este trabajo es analizar las redes y plataformas de ciencia ciudadana existentes con el fin de realizar una propuesta para su implementación en Navarra por parte de la Administración Ambiental; para ello se revisa cómo abordan otras administraciones la ciencia ciudadana a distintos niveles y las posibles formas de participación o colaboración de la Administración.Publication Open Access Drought stress causes a reduction in the biosynthesis of ascorbic acid in soybean plants(Frontiers Media, 2017) Seminario Huárriz, Amaia; Song, Li; Zulet González, Amaia; Nguyen, Henry T.; González García, Esther; Larrainzar Rodríguez, Estíbaliz; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; Gobierno de Navarra / Nafarroako Gobernua, 2016/PI013; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, 1287/2011Drought provokes a number of physiological changes in plants including oxidative damage. Ascorbic acid (AsA), also known as vitamin C, is one of the most abundant water-soluble antioxidant compound present in plant tissues. However, little is known on the regulation of AsA biosynthesis under drought stress conditions. In the current work we analyze the effects of water deficit on the biosynthesis of AsA by measuring its content, in vivo biosynthesis and the expression level of genes in the Smirnoff-Wheeler pathway in one of the major legume crop, soybean (Glycine max L. Merr). Since the pathway has not been described in legumes, we first searched for the putative orthologous genes in the soybean genome. We observed a significant genetic redundancy, with multiple genes encoding each step in the pathway. Based on RNA-seq analysis, expression of the complete pathway was detected not only in leaves but also in root tissue. Putative paralogous genes presented differential expression patterns in response to drought, suggesting the existence of functional specialization mechanisms. We found a correlation between the levels of AsA and GalLDH biosynthetic rates in leaves of drought-stressed soybean plants. However, the levels of GalLDH transcripts did not show significant differences under water deficit conditions. Among the other known regulators of the pathway, only the expression of VTC1 genes correlated with the observed decline in AsA in leaves.Publication Open Access Split‐root systems applied to the study of the legume‐rhizobial symbiosis: what have we learned?(Wiley, 2014) Larrainzar Rodríguez, Estíbaliz; Gil Quintana, Erena; Arrese-Igor Sánchez, César; González García, Esther; Marino Bilbao, Daniel; Ciencias del Medio Natural; Natura Ingurunearen ZientziakSplit-root system (SRS) approaches allow the differential treatment of separate and independent root systems, while sharing a common aerial part. As such, SRS is a useful tool for the discrimination of systemic (shoot origin) versus local (root/nodule origin) regulation mechanisms. This type of approach is particularly useful when studying the complex regulatory mechanisms governing the symbiosis established between legumes and Rhizobium bacteria. The current work provides an overview of the main insights gained from the application of SRS approaches to understand how nodule number (nodulation autoregulation) and nitrogen fixation are controlled both under non-stressful conditions and in response to a variety of stresses. Nodule number appears to be mainly controlled at the systemic level through a signal which is produced by nodule/root tissue, translocated to the shoot, and transmitted back to the root system, involving shoot Leu-rich repeat receptor-like kinases. In contrast, both local and systemic mechanisms have been shown to operate for the regulation of nitrogenase activity in nodules. Under drought and heavy metal stress, the regulation is mostly local, whereas the application of exogenous nitrogen seems to exert a regulation of nitrogen fixation both at the local and systemic levels.Publication Open Access Functional analysis of the taproot and fibrous roots of Medicago truncatula: sucrose and proline catabolism primary response to water deficit(Elsevier, 2019) Castañeda Presa, Verónica; Peña, Marlon de la; Azcárate Górriz, Lidia; Aranjuelo Michelena, Iker; González García, Esther; Ciencias; Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaRoot performance represents a target factor conditioning plant development under drought conditions. Moreover, recent root phenotyping studies remark relevant differences on functionality of the different root types. However, despite its relevance, the performance of different types of roots such as primary/taproot (tapR) and lateral/fibrous roots (fibR) under water stress conditions is largely unknown. In the current study, the impact of water stress on target C and N metabolism (namely sucrose and proline) processes were characterized in tapR and fibR of Medicago truncatula plants exposed to different water stress severity regimes (moderate versus severe). While both root types exhibit some common responses to face water stress, the study highlighted important physiological and metabolic differences between them. The tapR proved to have an essential role on carbon and nitrogen partitioning rather than just on storage. Moreover, this root type showed a higher resilience towards water deficit stress. Sucrose metabolization at sucrose synthase level was early blocked in this tissue together with a selective accumulation of some amino acids such as proline and branched chain amino adds, which may act as alternative carbon sources under water deficit stress conditions. The decline in respiration, despite the over-accumulation of carbon compounds, suggests a modulation at sucrose cleavage level by sucrose synthase and invertase. These data not only provide new information on the carbon and nitrogen metabolism modulation upon water deficit stress but also on the different role, physiology, and metabolism of the taproot and fibrous roots. In addition, obtained results highlight the fact that both root types show distinct performance under water deficit stress; this factor can be of great relevance to improve breeding programs for increasing root efficiency under adverse conditions.Publication Open Access Is N-feedback involved in the inhibition of nitrogen fixation in drought-stressed Medicago truncatula?(Oxford University Press, 2013) Gil Quintana, Erena; Larrainzar Rodríguez, Estíbaliz; Arrese-Igor Sánchez, César; González García, Esther; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa: 735/2008Drought stress is a major factor limiting nitrogen fixation (NF) in crop production. However, the regulatory mechanism involved and the origin of the inhibition, whether local or systemic, is still controversial and so far scarcely studied in temperate forage legumes. Medicago truncatula plants were symbiotically grown with a split-root system and exposed to gradual water deprivation. Physiological parameters, NF activity, and amino acid content were measured. The partial drought treatment inhibited NF in the nodules directly exposed to drought stress. Concomitantly, in the droughted below-ground organs, amino acids accumulated prior to any drop in evapotranspiration (ET). It is concluded that drought exerts a local inhibition of NF and drives an overall accumulation of amino acids in diverse plant organs which is independent of the decrease in ET. The general increase in the majority of single amino acids in the whole plant questions the commonly accepted concept of a single amino acid acting as an N-feedback signal.Publication Open Access Local inhibition of nitrogen fixation and nodule metabolism in drought-stressed soybean(Oxford University Press, 2013) Gil Quintana, Erena; Larrainzar Rodríguez, Estíbaliz; Seminario Huárriz, Amaia; Díaz Leal, Juan Luis; Alamillo, Josefa M.; Pineda, Manuel; Arrese-Igor Sánchez, César; Wienkoop, Stefanie; González García, Esther; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa: 735/2008; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa: 134/2012Drought stress is a major factor limiting symbiotic nitrogen fixation (NF) in soybean crop production. However, the regulatory mechanisms involved in this inhibition are still controversial. Soybean plants were symbiotically grown in a split-root system (SRS), which allowed for half of the root system to be irrigated at field capacity while the other half remained water deprived. NF declined in the water-deprived root system while nitrogenase activity was maintained at control values in the well-watered half. Concomitantly, amino acids and ureides accumulated in the water-deprived belowground organs regardless of transpiration rates. Ureide accumulation was found to be related to the decline in their degradation activities rather than increased biosynthesis. Finally, proteomic analysis suggests that plant carbon metabolism, protein synthesis, amino acid metabolism, and cell growth are among the processes most altered in soybean nodules under drought stress. Results presented here support the hypothesis of a local regulation of NF taking place in soybean and downplay the role of ureides in the inhibition of NFPublication Open Access Insights into the regulation of nitrogen fixation in pea nodules: lessons from drought, abscisic acid and increased photoassimilate availability(EDP Sciences, 2001) González García, Esther; Gálvez, Loli; Royuela Hernando, Mercedes; Aparicio Tejo, Pedro María; Arrese-Igor Sánchez, César; Ciencias del Medio Natural; Natura Ingurunearen ZientziakNitrogen fixation in legume nodules has been shown to be very sensitive to drought and other environmental constraints. It has been widely assumed that this decline in nitrogen fixation was a consequence of an increase in the so-called oxygen diffusion barrier and a subsequent impairment to bacteroid respiration. However, it has been recently shown that nitrogen fixation is highly correlated with nodule sucrose synthase (SS) activity under drought and other environmental stresses. Whether this correlation reflects a causative relationship or not has not been proven yet. The evidence presented here suggests that SS controls nitrogen fixation under mild drought conditions. However, nitrogen fixation cannot be enhanced only by increasing glycolytic flux, as under these conditions nodules become oxygen limited. Abscisic acid also induces a decline in nitrogen fixation that is independent of SS. The overall results suggest the occurrence of a complex regulation of nodule nitrogen fixation involving, at least, both carbohydrate and oxygen fluxes within the nodule.Publication Open Access Drought stress provokes the down-regulation of methionine and ethylene biosynthesis pathways in Medicago truncatula roots and nodules(Wiley, 2014) Larrainzar Rodríguez, Estíbaliz; Molenaar, Johanna A.; Wienkoop, Stefanie; Gil Quintana, Erena; Alibert, Bénédicte; Limami, Anis M.; Arrese-Igor Sánchez, César; González García, Esther; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, 735/2008Symbiotic nitrogen fixation is one of the first physiological processes inhibited in legume plants under water-deficit conditions. Despite the progress made in the last decades, the molecular mechanisms behind this regulation are not fully understood yet. Recent proteomic work carried out in the model legume Medicago truncatula provided the first indications of a possible involvement of nodule methionine (Met) biosynthesis and related pathways in response to waterdeficit conditions. To better understand this involvement, the drought-induced changes in expression and content of enzymes involved in the biosynthesis of Met, S-adenosyl-Lmethionine (SAM) and ethylene in M. truncatula root and nodules were analyzed using targeted approaches. Nitrogenfixing plants were subjected to a progressive water deficit and a subsequent recovery period. Besides the physiological characterization of the plants,the content of total sulphur,sulphate and main S-containing metabolites was measured. Results presented here show that S availability is not a limiting factor in the drought-induced decline of nitrogen fixation rates in M. truncatula plants and provide evidences for a downregulation of the Met and ethylene biosynthesis pathways in roots and nodules in response to water-deficit conditions.
- «
- 1 (current)
- 2
- 3
- »