Garrido Segovia, Julián José
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Garrido Segovia
First Name
Julián José
person.page.departamento
Ciencias
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
6 results
Search Results
Now showing 1 - 6 of 6
Publication Open Access Kinetics of the acid-catalyzed hydrolysis of tetraethoxysilane (TEOS) by 29Si NMR spectroscopy and mathematical modeling(Springer, 2018) Echeverría Morrás, Jesús; Moriones Jiménez, Paula; Arzamendi Manterola, Gurutze; Garrido Segovia, Julián José; Gil Idoate, María José; Cornejo Ibergallartu, Alfonso; Martínez Merino, Víctor; Química Aplicada; Kimika Aplikatua; Institute for Advanced Materials and Mathematics - INAMAT2Tetraethoxysilane (TEOS) is widely used to synthesize siliceous material by the sol–gel process. However, there is still some disagreement about the nature of the limiting step in the hydrolysis and condensation reactions. The goal of this research was to measure the variation in the concentration of intermediates formed in the acid-catalyzed hydrolysis by 29Si NMR spectroscopy, to model the reactions, and to obtain the rate constants and the activation energy for the hydrolysis and early condensation steps. We studied the kinetics of TEOS between pH 3.8 and 4.4, and four temperature values in the range of 277.2–313.2 K, with a TEOS:ethanol:water molar ratio of 1:30:20. Both hydrolysis and the condensation rate speeded up with the temperature and the concentration of oxonium ions. The kinetic constants for hydrolysis reactions increased in each step kh1 < kh2 < kh3 < kh4, but the condensation rate was lower for dimer formation than for the formation of the fully hydrolyzed Si(OH)4. The system was described according to 13 parameters: six of them for the kinetic constants estimated at 298.2 K, six to the activation energies, and one to the equilibrium constant for the fourth hydrolysis. The mathematical model shows a steady increase in the activation energy from 34.5 kJ mol−1 for the first hydrolysis to 39.2 kJ mol−1 in the last step. The activation energy for the condensation reaction from Si(OH)4 was ca. 10 kJ mol−1 higher than the largest activation energy in the hydrolytic reactions. The decrease in the net positive charge on the Si atom contributes to the protonation of the ethoxy group and makes it a better leaving group.Publication Open Access Comprehensive kinetics of hydrolysis of organotriethoxysilanes by 29Si NMR(American Chemical Society, 2019) Moriones Jiménez, Paula; Arzamendi Manterola, Gurutze; Cornejo Ibergallartu, Alfonso; Garrido Segovia, Julián José; Echeverría Morrás, Jesús; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2The kinetics of several representative hybrid precursors were studied via 29Si NMR: three alkyl precursors, methyltriethoxysilane, ethyltriethoxysilane, and propyltriethoxysilane; as well as two unsaturated radicals, vinyltriethoxysilane and phenyltriethoxysilane. The reaction rate is related to the chemical shift of 29Si in the NMR spectra, which gives information about the electronic density of the Si atoms and the inductive effects of substituents. The concentration of the precursors decreased exponentially with time, and the intermediate products of hydrolysis and the beginning of the condensation reactions showed curves characteristic of sequential reactions, with a similar distribution of the species as a function of the fractional conversion. For all of the precursors, condensation started when the most hydrolyzed species reached a maximum concentration of 0.30 M, when the precursor had run out. A prediction following the developed mathematical model fits the experimental results in line with a common pathway described by eight parameters.Publication Open Access Fiber optic sensors based on hybrid phenyl-silica xerogel films to detect n-hexane: determination of the isosteric enthalpy of adsorption(Beilstein-Institut, 2017) Echeverría Morrás, Jesús; Calleja, Ignacio; Moriones Jiménez, Paula; Garrido Segovia, Julián José; Kimika Aplikatua; Institute for Advanced Materials and Mathematics - INAMAT2; Química Aplicada; Gobierno de Navarra / Nafarroako Gobernua, 269/01/08We investigated the response of three fiber optic sensing elements prepared at pH 10 from phenyltriethoxysilane (PhTEOS) and tetraethylsilane (TEOS) mixtures with 30, 40, and 50% PhTEOS in the silicon precursor mixture. The sensing elements are referred to as Ph30, Ph40 and Ph50, respectively. The films were synthesized by the sol–gel method and affixed to the end of optical fibers by the dip-coating technique. Fourier transform infrared spectroscopy, N2 adsorption–desorption at 77 K and X-ray diffraction analysis were used to characterize the xerogels. At a given pressure of n-hexane, the response of each sensing element decreased with temperature, indicating an exothermic process that confirmed the role of adsorption in the overall performance of the sensing elements. The isosteric adsorption enthalpies were obtained from the calibration curves at different temperatures. The magnitude of the isosteric enthalpy of n-hexane increased with the relative response and reached a plateau that stabilized at approximately −31 kJ mol−1 for Ph40 and Ph50 and at approximately −37 kJ mol−1 for Ph30. This indicates that the adsorbate–adsorbent interaction was dominant at lower relative pressure and condensation of the adsorbate on the mesopores was dominant at higher relative pressure.Publication Open Access Henri Lenaerts: su búsqueda, su silencio(Gobierno de Navarra, 2019) Aliende Urtasun, Ana; Garrido Segovia, Julián José; Kortadi, Edorta; Lenaerts, Henri; Masse, JudithLa exposición muestra esculturas, la mayoría de bronce, pinturas, grabados, tapices, tejidos por Paulette Garin según sus cartones, y un conjunto sobresaliente de dibujos. Todas estas obras se presentan ligadas por la visión de su comisario, Edorta Kortadi, que ve en Henri Lenaerts a un «artista trotamundos, culto, abierto, y religioso de claros acentos panteístas» y a quien se da voz también con la publicación de su autobiografía y otros escritos en el catálogo.Publication Open Access Volatile compounds other than CO2 emitted by different microorganisms promote distinct posttranscriptionally regulated responses in plants(Wiley, 2019) García Gómez, Pablo; Almagro Zabalza, Goizeder; Sánchez López, Ángela María; Bahaji, Abdellatif; Ameztoy del Amo, Kinia; Ricarte Bermejo, Adriana; Baslam, Marouane; López Gómez, Pedro; Morán Juez, José Fernando; Garrido Segovia, Julián José; Muñoz Pérez, Francisco José; Baroja Fernández, Edurne; Pozueta Romero, Javier; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Gobierno de Navarra / Nafarroako GobernuaA 'box-in-box' cocultivation system was used to investigate plant responses to microbial volatile compounds (VCs) and to evaluate the contributions of organic and inorganic VCs (VOCs and VICs, respectively) to these responses. Arabidopsis plants were exposed to VCs emitted by adjacent Alternaria alternata and Penicillium aurantiogriseum cultures, with and without charcoal filtration. No VOCs were detected in the headspace of growth chambers containing fungal cultures with charcoal filters. However, these growth chambers exhibited elevated CO2 and bioactive CO and NO headspace concentrations. Independently of charcoal filtration, VCs from both fungal phytopathogens promoted growth and distinct developmental changes. Plants cultured at CO2 levels observed in growth boxes containing fungal cultures were identical to those cultured at ambient CO2. Plants exposed to charcoal-filtered fungal VCs, nonfiltered VCs, or superelevated CO2 levels exhibited transcriptional changes resembling those induced by increased irradiance. Thus, in the 'box-in-box'' system, (a) fungal VICs other than CO2 and/or VOCs not detected by our analytical systems strongly influence the plants' responses to fungal VCs, (b) different microorganisms release VCs with distinct action potentials, (c) transcriptional changes in VC-exposed plants are mainly due to enhanced photosynthesis signaling, and (d) regulation of some plant responses to fungal VCs is primarily posttranscriptional.Publication Open Access Phenyl siloxane hybrid xerogels: structure and porous texture(Springer US, 2019) Moriones Jiménez, Paula; Echeverría Morrás, Jesús; Parra, Bernardo; Garrido Segovia, Julián José; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Gobierno de Navarra / Nafarroako GobernuaThe aim of this research is to investigate the effect of phenyltriethoxysilane (PhTEOS) and tetraethoxysilane (TEOS) molar ratios as silicon precursors on the structure and porous texture of xerogels. We have prepared phenyl-silane hybrid xerogels from mixtures of PhTEOS and TEOS at pH 10 and 333 K, using ethanol as a solvent. Characterization techniques include 29Si NMR, FTIR, XRD, FE-SEM, HRTEM, TGA-DSC, helium density, and gas adsorption (N2 at 77 K and CO2 at 273 K). In order to assess the contribution of the quadrupolar moment of N2 and CO2 in the adsorption we obtained the adsorption– desorption isotherm of Ar at 87.3 K for the xerogel synthesized from 50% PhTEOS. The morphology of xerogels changed from aggregates of spherical particles for 20% PhTEOS to lamellae for samples obtained with PhTEOS percentages equal or larger that 60%. The incorporation of phenyl groups into the xerogel matrix caused an increase in the spacing bond between silicon atoms and led to an intramolecular reaction and the formation of lamellar domains. Increasing the PhTEOS molar ratio in the mixture of silicon precursors produced hybrid xerogels with lower specific surface area, pore volume and characteristic energy. The similarity between the isotherms of N2 at 77 K and Ar at 87.3 K indicates that the main retention mechanism is physisorption and that the variation in the surface chemistry with the incorporation of phenyl groups doesn’t inhibit the retention of N2.