Reyero Zaragoza, Inés

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Reyero Zaragoza

First Name

Inés

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 5 of 5
  • PublicationOpen Access
    Extruded catalysts with magnetic properties for biodiesel production
    (Hindawi, 2018) Silveira Junior, Euripedes Garcia; Justo, Oselys Rodriguez; Perez, Victor Haber; Reyero Zaragoza, Inés; Serrano Lotina, Ana; Campos Ramírez, Leonardo; Dias, Dayana F. dos Santos ; Ciencias; Zientziak
    The aim of this work was to evaluate the performance of different extruded catalysts containing K2CO3 as active phase and adding conveniently γ-Al2O3 and/or sepiolite and magnetic particles on the biodiesel production from sunflower oil by the ethanolic route. Firstly, the content of the Fe3O4 on the catalyst (0.1, 0.2, 0.3, and 0.4 g Fe3O4/g of K2CO3/γ-Al2O3), after calcination step, was evaluated to verify the separation facility of the catalysts with magnetic properties from reactional medium, using an external magnetic field, at the end of biodiesel synthesis. After that, three different catalysts were considered for comparative purposes: (a) K2CO3/γ-Al2O3; (b) K2CO3/γ-Al2O3/Fe3O4; (c) K2CO3/γ-Al2O3/Sepiolite/Fe3O4 and subsequently characterized by dynamometry, TGA, SEM, VSM, BET, and XRD to determine their mechanical, structural, magnetic, and textural properties. However, their catalytic activities were determined through biodiesel production that was carried out in a glass volumetric reactor during 4 h, under magnetic stirring with 5% wt. of the catalyst and oil: ethanol molar ratio (1: 12) at 80°C reaction temperature. The best result, i.e., around 88% of biodiesel conversion, was obtained with catalyst K2CO3/γ-Al2O3/Sepiolite/Fe3O4 which showed also satisfactory textural and mechanical strength properties comparatively with the other catalytic derivatives. In addition, no agglomeration of the particles was observed during the reaction, and the magnetic property of this catalytic system was satisfactory for adequate separation from reactional medium seeking further reuse. The attained results are attractive for possible implementation at industrial scale and can be considered to mitigate drawbacks which resulting by using of homogeneous catalysts in the conventional processes.
  • PublicationOpen Access
    Avances en la producción de biodiésel: etanolisis y nuevos catalizadores heterogéneos
    (2014) Reyero Zaragoza, Inés; Gandía Pascual, Luis; Arzamendi Manterola, Gurutze; Química Aplicada; Kimika Aplikatua
    La síntesis convencional del biodiésel se realiza por transesterificación con metanol de los triglicéridos que constituyen los aceites vegetales en presencia de catalizadores básicos homogéneos. En esta tesis se estudian las implicaciones que supone: i) la sustitución de metanol de origen fósil por etanol para mejorar la sostenibilidad del biodiésel; ii) el empleo de catalizadores de tipo heterogéneo, tanto soportados como estructurados para poder ser reutilizados, simplificando además las etapas de purificación de los productos (biodiésel y glicerina) y reduciendo los costes de operación y el impacto ambiental del proceso. Se ha encontrado que las reacciones de metanolisis y etanolisis de triglicéridos presentan diferencias significativas ya que gracias a la mayor intersolubilidad de los diferentes compuestos, la etanolisis se desarrolla en un medio homogéneo mientras que la metanolisis es una reacción heterogénea bifásica. Se ha formulado un modelo cinético para la etanolisis de aceite de girasol catalizada por NaOH que incluye las tres etapas de la reacción de transesterificación como reacciones reversibles elementales y en el que las ecuaciones cinéticas incluyen de forma explícita la concentración de catalizador con orden de reacción 1. El modelo incluye el equilibrio de interconversión entre los aniones hidróxido y etóxido y reacciones de saponificación. El modelo permite describir la evolución con el tiempo de reacción de la conversión del aceite y de los rendimientos a los productos de reacción, incluyendo diglicéridos y monoglicéridos. También captura el fenómeno de agotamiento del catalizador por formación de jabones que se observa a bajas concentraciones iniciales de NaOH y relaciones molares etanol/aceite. Con respecto a los catalizadores heterogéneos másicos, el esfuerzo se ha centrado en el CaO y sus derivados como catalizadores de metanolisis. El CaO es muy sensible a la contaminación con el CO2 y la humedad atmosféricas, lo que provoca pérdida de su actividad. Además en la propia reacción se transforma en gliceróxido de calcio al reaccionar con el glicerol. El gliceróxido es activo en la reacción de metanolisis, pero también muy soluble en metanol lo que incrementa la contribución de catálisis homogénea. Se ha logrado sintetizar e identificar un nuevo compuesto activo en esta reacción, el glicerolato de Ca, que al ser muy poco soluble en metanol, se constituye en un buen candidato para el desarrollo de catalizadores heterogéneos de síntesis de biodiésel. El empleo de catalizadores estructurados supone un paso importante en las posibilidades de recuperación y reutilización del catalizador. Se han formulado series de catalizadores estructurados a base de monolitos metálicos e hidrotalcita Mg-Al y óxidos Ca-Ce. Los resultados catalíticos han sido buenos desde el punto de vista de la actividad, sin embargo, se han presentado problemas de estabilidad relacionados con la baja adherencia de la fase activa al sustrato. Lograr una mayor interacción Ca-Ce parece ser clave para mejorar la estabilidad.
  • PublicationOpen Access
    Effect of oxygen addition, reaction temperature and thermal treatments on syngas production from biogas combined reforming using Rh/alumina catalysts
    (Elsevier, 2019) Navarro Puyuelo, Andrea; Reyero Zaragoza, Inés; Moral Larrasoaña, Ainara; Bimbela Serrano, Fernando; Bañares, Miguel A.; Gandía Pascual, Luis; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2
    Dry reforming and partial oxidation of biogas were studied using 0.5 wt.% Rh/Al2O3 catalysts, both inhouse prepared and commercial. The effects of O2 addition on syngas yield and biogas conversion were studied at 700 C using different O2/CH4 ratios in the gas feeding stream: 0 (dry reforming), 0.12, 0.25, 0.45 and 0.50. The highest CH4 conversion, H2 yield and H2/CO molar ratio were obtained with an O2/CH4 ratio of 0.45, even though simultaneous valorization of both CH4 and CO2 could be best attained when the O2/CH4 ratio was 0.12. Increased biogas conversions and syngas yields were obtained by increasing reaction temperatures between 650 and 750 C. A detrimental influence on catalytic activity could be observed when the catalyst was subjected to calcination. Increasing the hold time of the thermal conditioning of the catalyst under inert flow altered Rh dispersion, though had no significant impact on catalyst performance in the dry reforming of methane at 700 C and 150 N L CH4/(gcat h). Characterization of spent samples after reaction by Raman spectroscopy revealed the presence of carbonaceous deposits of different nature, especially on the commercial(named as Rh com) and calcined (Rh calc) catalysts, though oxygen addition in the biogas feed significantly reduced the amount of these deposits. The Rh catalysts that had not been calcined after impregnation (Rh prep) did not present any noticeable characteristic peaks in the G and D bands. In particular, scanning transmission electron microscopy (STEM) images of the spent Rh prep sample revealed the presence of very highly dispersed Rh nanoparticles after reaction, of particle sizes of about 1 nm, and no noticeable C deposits. Combined oxy-CO2 reforming of biogas using highly dispersed and low metal-loading Rh/Al2O3 catalysts with low O2 dosage in the reactor feed can be used to effectively transform biogas into syngas.
  • PublicationOpen Access
    Rutas y retos para la valorización de biogás
    (Universidad Libre (Colombia), 2017) Navarro Puyuelo, Andrea; Reyero Zaragoza, Inés; Moral Larrasoaña, Ainara; Bimbela Serrano, Fernando; Gandía Pascual, Luis; Química Aplicada; Kimika Aplikatua
    Las tecnologías de digestión anaerobia para procesar corrientes residuales (fracción orgánica de resi­duos de vertedero, lodos de estaciones depuradoras de aguas residuales, purines, etc.) han originado un incremento de la producción de biogás. El biogás está compuesto principalmente por metano y dióxido de carbono, aunque contiene otros componentes minoritarios e impurezas que obligan a efectuar tratamientos para su purificación y acondicionamiento. Existen diversas alternativas para el aprovechamiento y la valorización de este gas, como son: su utilización directa en la generación de energía calorífica y/o eléctrica, su conversión a biometano, y la producción de gas de síntesis (H2+­CO), que posteriormente permite producir combustibles líquidos y/o compuestos químicos de interés como el metanol. En este trabajo se presenta una revisión general de las alternativas de valorización de biogás, con énfasis en los procesos de reformado catalítico, tales como el reformado seco o con vapor de agua y procesos de reformado combinado incluyendo la oxidación parcial.
  • PublicationOpen Access
    Biodiesel production from heterogeneous catalysts based K2CO3 supported on extruded Γ-Al2O3
    (Elsevier, 2019) Silveira Junior, Euripedes Garcia; Perez, Victor Haber; Reyero Zaragoza, Inés; Serrano Lotina, Ana; Justo, Oselys Rodriguez; Ciencias; Zientziak
    Catalytic biodiesel production from sunflower oil and ethanol using K2CO3/γ-Al2O3 in different configurations has been studied. To prepare the catalysts, boehmite was extruded with the aid of a binder and different percentages of K2CO3 active phase (15–45%) impregnated on the supports for comparative purposes. The transesterification reactions were carried out during 4 h using 5 wt% of the catalyst and the effects of oil: alcohol molar ratio and temperature were investigated to improve biodiesel formation. The best result (99.3% conversion) was obtained when 35% K2CO3/65% γ-Al2O3 hollow cylinder catalyst was used at 80 °C and 1:12 oil: ethanol molar ratio, showing their potential as promising alternative to conventional homogeneous catalytic systems used for biodiesel production at industrial scale.