Person:
Marco Detchart, Cedric

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Marco Detchart

First Name

Cedric

person.page.departamento

Automática y Computación

person.page.instituteName

ORCID

0000-0002-4310-9060

person.page.upna

810938

Name

Search Results

Now showing 1 - 10 of 11
  • PublicationOpen Access
    Dealing with uncertainty: a human perception approach in image processing
    (2019) Marco Detchart, Cedric; López Molina, Carlos; Fernández Fernández, Francisco Javier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Una de las maneras de abordar la comparación entre objetos es mediante el uso de la similitud (comparando sus atributos comunes) o la disimilitud (comparando sus diferencias). La similitud ha sido estudiada de maneras muy diversas, desde muchos puntos de vista y en una variedad de campos tales que la psicología, la neurociencia o las matemáticas. Uno de los principales temas en los que las distancias y las similitudes han sido abordadas es a través de la lógica difusa, que permite implementar una perspectiva humana en las medidas de comparación, aportando una herramienta que permite capturar la incertidumbre inherente en la percepción de la distancia. Dentro de este contexto de la comparación y la similitud, encontramos un concepto relacionado, como es la correspondencia de características. Este concepto es una de las técnicas más utilizada en la detección de patrones o la evaluación del rendimiento de un algoritmo. En esta tesis doctoral hemos estudiado la similitud en el contexto de la lógica difusa junto con una serie de propuestas en las que tiene cabida. Entre otras, podemos citar la extracción de patrones en el análisis de huellas dactilares, cuyo estudio ha llevado en esta tesis al desarrollo de nuevos conceptos como las Funciones de Equivalencia Restringidas Radiales y las Medidas de Similitud Radiales, que modelan la similitud percibida entre datos radiales, tanto escalares como vectoriales. Además, como un estudio más explícito de las distancias en la lógica difusa, hemos abordado el estudio de las distancias, las medidas de similitud y la entropía en conjuntos difusos intervalo-valorados. Para ello, hemos incluido la amplitud del intervalo en el cálculo de las medidas. Esta condición adicional nos ha permitido conectar la incertidumbre contenida en el intervalo final con la del intervalo inicial. Finalmente, de manera complementaria hemos estudiado la aplicación de nuestros resultados teóricos en tareas de procesamiento de imagen. Hemos desarrollado un detector de bordes mediante el uso de funciones monótonas direccionalmente ordenadas y técnicas de toma de decisión por consenso. Además, hemos realizado un estudio que recoge las diferentes técnicas de análisis de calidad para los métodos de extracción de bordes, resultando en una nueva taxonomía de los diferentes métodos y un análisis de su comportamiento, mostrando que ninguno de los métodos es más adecuado que otro, siendo equivalentes entre si.
  • PublicationOpen Access
    Neuro-inspired edge feature fusion using Choquet integrals
    (Elsevier, 2021) Marco Detchart, Cedric; Lucca, Giancarlo; López Molina, Carlos; Miguel Turullols, Laura de; Pereira Dimuro, Graçaliz; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    It is known that the human visual system performs a hierarchical information process in which early vision cues (or primitives) are fused in the visual cortex to compose complex shapes and descriptors. While different aspects of the process have been extensively studied, such as lens adaptation or feature detection, some other aspects, such as feature fusion, have been mostly left aside. In this work, we elaborate on the fusion of early vision primitives using generalizations of the Choquet integral, and novel aggregation operators that have been extensively studied in recent years. We propose to use generalizations of the Choquet integral to sensibly fuse elementary edge cues, in an attempt to model the behaviour of neurons in the early visual cortex. Our proposal leads to a fully-framed edge detection algorithm whose performance is put to the test in state-of-the-art edge detection datasets.
  • PublicationOpen Access
    Similarity between interval-valued fuzzy sets taking into account the width of the intervals and admissible orders
    (Elsevier, 2020) Bustince Sola, Humberto; Marco Detchart, Cedric; Fernández Fernández, Francisco Javier; Wagner, Christian; Garibaldi, Jonathan M.; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas
    In this work we study a new class of similarity measures between interval-valued fuzzy sets. The novelty of our approach lays, firstly, on the fact that we develop all the notions with respect to total orders of intervals; and secondly, on that we consider the width of intervals so that the uncertainty of the output is strongly related to the uncertainty of the input. For constructing the new interval-valued similarity, interval valued aggregation functions and interval-valued restricted equivalence functions which take into account the width of the intervals are needed, so we firstly study these functions, both in line with the two above stated features. Finally, we provide an illustrative example which makes use of an interval-valued similarity measure in stereo image matching and we show that the results obtained with the proposed interval-valued similarity measures improve numerically (according to the most widely used measures in the literature) the results obtained with interval valued similarity measures which do not consider the width of the intervals.
  • PublicationOpen Access
    From restricted equivalence functions on Ln to similarity measures between fuzzy multisets
    (IEEE, 2023) Ferrero Jaurrieta, Mikel; Takáč, Zdenko; Rodríguez Martínez, Iosu; Marco Detchart, Cedric; Bernardini, Ángela; Fernández Fernández, Francisco Javier; López Molina, Carlos; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Restricted equivalence functions are well-known functions to compare two numbers in the interval between 0 and 1. Despite the numerous works studying the properties of restricted equivalence functions and their multiple applications as support for different similarity measures, an extension of these functions to an n-dimensional space is absent from the literature. In this paper, we present a novel contribution to the restricted equivalence function theory, allowing to compare multivalued elements. Specifically, we extend the notion of restricted equivalence functions from L to L n and present a new similarity construction on L n . Our proposal is tested in the context of color image anisotropic diffusion as an example of one of its many applications.
  • PublicationOpen Access
    A framework for radial data comparison and its application to fingerprint analysis
    (Elsevier, 2016) Marco Detchart, Cedric; Cerrón González, Juan; Miguel Turullols, Laura de; López Molina, Carlos; Bustince Sola, Humberto; Galar Idoate, Mikel; Automatika eta Konputazioa; Institute of Smart Cities - ISC; Automática y Computación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    This work tackles the comparison of radial data, and proposes comparison measures that are further applied to fingerprint analysis. First, we study the similarity of scalar and non-scalar radial data, elaborated on previous works in fuzzy set theory. This study leads to the concepts of restricted radial equivalence function and Radial Similarity Measure, which model the perceived similarity between scalar and vectorial pieces of radial data, respectively. Second, the utility of these functions is tested in the context of fingerprint analysis, and more specifically, in the singular point detection. With this aim, a novel Template-based Singular Point Detection method is proposed, which takes advantage of these functions. Finally, their suitability is tested in different fingerprint databases. Different Similarity Measures are considered to show the flexibility offered by these measures and the behaviour of the new method is compared with well-known singular point detection methods.
  • PublicationOpen Access
    Directions of directional, ordered directional and strengthened ordered directional increasingness of linear and ordered linear fusion operators
    (IEEE, 2019) Sesma Sara, Mikel; Marco Detchart, Cedric; Lafuente López, Julio; Roldán López de Hierro, Antonio Francisco; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this work we discuss the forms of monotonicity that have been recently introduced to relax the monotonicity condition in the definition of aggregation functions. We focus on directional, ordered directional and strengthened ordered directional monotonicity, study their main properties and provide some results about their links and relations among them. We also present two families of functions, the so-called linear fusion functions and ordered linear fusion functions and we study the set of directions for which these types of functions are directionally, ordered directionally and strengthened ordered directionally increasing. In particular, OWA operators are an example of ordered linear fusion functions.
  • PublicationOpen Access
    Image feature extraction using OD-monotone functions
    (Springer, 2018) Marco Detchart, Cedric; López Molina, Carlos; Fernández Fernández, Francisco Javier; Pagola Barrio, Miguel; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas
    Edge detection is a basic technique used as a preliminary step for, e.g., object extraction and recognition in image processing. Many of the methods for edge detection can be fit in the breakdown structure by Bezdek, in which one of the key parts is feature extraction. This work presents a method to extract edge features from a grayscale image using the so-called ordered directionally monotone functions. For this purpose we introduce some concepts about directional monotonicity and present two construction methods for feature extraction operators. The proposed technique is competitive with the existing methods in the literature. Furthermore, if we combine the features obtained by different methods using penalty functions, the results are equal or better results than stateof-the-art methods.
  • PublicationOpen Access
    Systematic review of aggregation functions applied to image edge detection
    (MDPI, 2023) Amorim, Miqueias; Pereira Dimuro, Graçaliz; Borges, Eduardo N.; Dalmazo, Bruno L.; Marco Detchart, Cedric; Lucca, Giancarlo; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Edge detection is a crucial process in numerous stages of computer vision. This field of study has recently gained momentum due to its importance in various applications. The uncertainty, among other characteristics of images, makes it difficult to accurately determine the edge of objects. Furthermore, even the definition of an edge is vague as an edge can be considered as the maximum boundary between two regions with different properties. Given the advancement of research in image discontinuity detection, especially using aggregation and pre-aggregation functions, and the lack of systematic literature reviews on this topic, this paper aims to gather and synthesize the current state of the art of this topic. To achieve this, this paper presents a systematic review of the literature, which selected 24 papers filtered from 428 articles found in computer databases in the last seven years. It was possible to synthesize important related information, which was grouped into three approaches: (i) based on both multiple descriptor extraction and data aggregation, (ii) based on both the aggregation of distance functions and fuzzy C-means, and (iii) based on fuzzy theory, namely type-2 fuzzy and neutrosophic sets. As a conclusion, this review provides interesting gaps that can be explored in future work.
  • PublicationOpen Access
    Ordered directional monotonicity in the construction of edge detectors
    (Elsevier, 2021) Marco Detchart, Cedric; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Mesiar, Radko; Lafuente López, Julio; Barrenechea Tartas, Edurne; Pintor Borobia, Jesús María; Estatistika, Informatika eta Matematika; Ingeniaritza; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Ingeniería
    In this paper we provide a specific construction method of ordered directionally monotone functions. We show that the functions obtained with this construction method can be used to build edge detectors for grayscale images. We compare the results of these detectors to those obtained with some other ones that are widely used in the literature. Finally, we show how a consensus edge detector can be built improving the results obtained both by our proposal and by those in the literature when applied individually.
  • PublicationOpen Access
    Optical images-based edge detection in Synthetic Aperture Radar images
    (Elsevier, 2015) Silva Junior, Gilberto P.; Frery, Alejandro C.; Bustince Sola, Humberto; Barrenechea Tartas, Edurne; Marco Detchart, Cedric; Automática y Computación; Automatika eta Konputazioa
    We address the issue of adapting optical images-based edge detection techniques for use in Polarimetric Synthetic Aperture Radar (PolSAR) imagery. We modify the gravitational edge detection technique (inspired by the Law of Universal Gravity) proposed by Lopez-Molina et al., using the non-standard neighbourhood configuration proposed by Fu et al., to reduce the speckle noise in polarimetric SAR imagery. We compare the modified and unmodified versions of the gravitational edge detection technique with the well-established one proposed by Canny, as well as with a recent multiscale fuzzy-based technique proposed by Lopez-Molina et al. We also address the issues of aggregation of gray level images before and after edge detection and of filtering. All techniques addressed here are applied to a mosaic built using class distributions obtained from a real scene, as well as to the true PolSAR image; the mosaic results are assessed using Baddeley’s Delta Metric. Our experiments show that modifying the gravitational edge detection technique with a non-standard neighbourhood configuration produces better results than the original technique, as well as the other techniques used for comparison. The experiments show that adapting edge detection methods from Computational Intelligence for use in PolSAR imagery is a new field worthy of exploration.