Marroyo Palomo, Luis

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Marroyo Palomo

First Name

Luis

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 25
  • PublicationOpen Access
    State-of-charge-based droop control for stand-alone AC supply systems with distributed energy storage
    (Elsevier, 2015) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The droop method is an advantageous technique for stand-alone AC supply systems, allowing for power sharing among various inverters with no need for communication cables. However, in stand-alone systems with multiple distributed energy storage units, the conventional droop methods are unable to control the storage unit state-of-charge (SOC) in order to change simultaneously. Existing techniques endeavor to solve this problem by changing the slope of the P – f curve however this solution compromises the power response performance. As an alternative, this paper proposes a new SOC-based droop control, whereby the P – f curve is shifted either upwards or downwards according to the battery SOC. The proposed technique makes it possible to select the time constant for the battery SOC convergence and, at the same time, to optimize the power response performance. The paper also shows how the SOC changes when the ratios between the battery capacity and the inverter rated power are different and how the proposed technique can limit the SOC imbalance. Simulation and experimental results corroborate the theoretical analysis.
  • PublicationOpen Access
    Effect of the inner current loop on the voltage regulation for three-phase photovoltaic inverters
    (IEEE, 2020) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    In three-phase grid-connected PV inverters, regulating the input voltage is a fundamental requirement. In order to reduce the influence of the PV non-linear behavior and ensure stability in the whole operating range, the input capacitance is currently oversized. This paper reveals the important effect of the inner current loop in the voltage stability and proposes to use a Proportional (P) controller instead of a PI controller. If tuned following the guidelines provided in this paper, the P controller makes it possible to design a stable voltage loop without increasing the input capacitance, thus reducing the converter cost.
  • PublicationOpen Access
    Power angle-frequency droop control to enhance transient stability of grid-forming inverters under voltage dips
    (IEEE, 2022) Erdocia Zabala, Ioseba; Urtasun Erburu, Andoni; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Due to the replacement of synchronous generators, grid operators are currently demanding to control grid-connected inverters in grid–forming mode to make them participate in the maintenance of the grid. To carry this out, the traditional droop controls based on the active and reactive powers are usually adopted, achieving a satisfactory performance in normal operation. Nevertheless, the power-frequency (P-ω) droop may become transiently unstable under voltage dips. This is because of the modification of the active power response caused by the inverter current limitation together with the voltage reduction. To enhance this, the power angle-frequency (δinv-ω) droop is proposed, consisting in employing an estimation of the inverter power angle as input to obtain the inverter frequency. The proposed method provides the inverter with the same performance as the P-ω droop in normal operation, while enhancing considerably the transient stability margins under current limitation. This is thanks to the higher variation of the inverter power angle with the phase difference between the inverter and the grid. Simulation results show the transient stability problems of the P-ω droop as well as the superior performance of the proposed δinv-ω droop control, which has also been verified by means of HIL results.
  • PublicationOpen Access
    High frequency power transformers with foil windings: maximum interleaving and optimal design
    (IEEE, 2015) Barrios Rípodas, Ernesto; Urtasun Erburu, Andoni; Ursúa Rubio, Alfredo; Marroyo Palomo, Luis; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Foil conductors and primary and secondary interleaving are normally used to minimize winding losses in high frequency transformers used for high-current power applications. However, winding interleaving complicates the transformer assembly, since taps are required to connect the winding sections, and also complicates the transformer design, since it introduces a new tradeoff between minimizing losses and reducing the construction difficulty. This paper presents a novel interleaving technique, named maximum interleaving, that makes it possible to minimize the winding losses as well as the construction difficulty. An analytical design methodology is also proposed in order to obtain free cooled transformers with a high efficiency, low volume and, therefore, a high power density. For the purpose of evaluating the advantages of the proposed maximum interleaving technique, the methodology is applied to design a transformer positioned in the 5 kW 50 kHz intermediate high frequency resonant stage of a commercial PV inverter. The proposed design achieves a transformer power density of 28 W/cm3 with an efficiency of 99.8%. Finally, a prototype of the maximum-interleaved transformer is assembled and validated satisfactorily through experimental tests.
  • PublicationOpen Access
    Control strategy for an integrated photovoltaic-battery system
    (IEEE, 2017) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    In photovoltaic-battery systems, more attention is usually paid to the MPPT control while the battery management is put aside. This paper proposes two control strategies for an integrated PV-battery system, both of them making it possible to perform MPPT or regulate the battery voltage to its maximum value in order to prevent it from overcharging. Simulation results prove the feasibility of both controls.
  • PublicationOpen Access
    Dynamic analysis of the conductance-frequency droop control during current limitation
    (IEEE, 2024-08-30) Urtasun Erburu, Andoni; Erdocia Zabala, Ioseba; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA2024-11695
    In inverter-based stand-alone microgrids, the P-f and O-V droop methods are frequently used to keep control of the microgrid voltage. However, in the presence of overloads or short-circuits, in which the inverter must perform a current- limiting strategy, the P-f droop becomes prone to transient instability. In order to remain stable under any possible overload or fault, the conductance-frequency $({G-f})$ droop is a promising alternative, however no analysis about its dynamic response has been carried out so far. This paper proposes a small-signal model of the system during current limitation, proving that the ${G-f}$ droop is also superior to the existing droop methods in terms of rapidity. Simulation results validate the theoretical analysis.
  • PublicationOpen Access
    DC capacitance reduction in three-phase photovoltaic inverters by using virtual impedance emulation
    (IEEE, 2019) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    DC voltage regulation in grid-connected three-phase PV inverters is a fundamental requirement. In order to reduce the influence of the PV non-linear behavior and ensure stability in the whole operating range, the input capacitance in high-power inverters is currently oversized, thus increasing the converter cost. This paper proposes a control method which emulates a virtual impedance in parallel with the PV generator, making it possible to reduce the capacitance by a factor of 5. Simulation results confirm that the proposed control is stable and fast enough in the whole operating range with such a small capacitor.
  • PublicationOpen Access
    Small wind turbines sensorless MPPT: robustness analysis and lossless approach
    (IEEE, 2014) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The configuration Permanent Magnet Synchronous Generator (PMSG) with diode bridge is frequently used in small Wind Energy Conversion Systems (WESC) thanks to its reliability and low cost. In order to perform a sensorless Maximum Power Point Tracking (MPPT), a suitable method consists of imposing the relationship between the dc current and the dc voltage in optimum operation. However, this strategy requires having knowledge of the system parameters, which are inaccurately known and can vary in real applications. Thus, optimum curve is not precisely obtained, leading to power losses. This paper evaluates to what extent the power is reduced due to parameter errors. It is shown how the power can be drastically decreased due to some parameter variation whereas it is not affected by others such as the resistance, which can then be neglected in order to simplify the model. Simulation results for an actual wind profile validate the theoretical analysis.
  • PublicationOpen Access
    Comparison of linear and and small-signal models for inverter-based microgrids
    (IEEE, 2014) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Frequency and voltage regulation in droop-based microgrids is generally modeled using small-signal analysis. In order to ensure accuracy, existing models do not decouple real and reactive power responses. However, the models become complicated and hide the real decoupled dynamics. This paper proposes a simple linear model which makes it possible to discern the different dynamic properties and to readily design the control parameters. The proposed model is validated by comparison with an accurate small-signal model and by simulation results. The effect of not considering the load is also evaluated.
  • PublicationOpen Access
    Control of a photovoltaic array interfacing current-mode-controlled boost converter based on virtual impedance emulation
    (IEEE, 2019) Urtasun Erburu, Andoni; Samanes Pascual, Javier; Barrios Rípodas, Ernesto; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Due to the nonlinear characteristics of a photovoltaic (PV) array, its regulation is highly dependent on the operating point. Focusing on a dc-dc boost converter, this paper first shows how the PV voltage and inductor current controls are affected by the PV array. It then proposes to emulate an impedance virtually connected to the PV array, making it possible to greatly improve the control robustness. Thanks to the proposed strategy, the crossover frequency variation for the whole operating range is reduced from 42 times for the traditional control to 3.5 times when emulating parallel resistance or to 1.4 times when emulating series and parallel resistances, all with simple implementation. Experimental results with a commercial PV inverter and a 4-kWp PV array validate the theoretical analysis and demonstrate the superior performance of the proposed control.