Marroyo Palomo, Luis

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Marroyo Palomo

First Name

Luis

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 59
  • PublicationOpen Access
    Fuzzy-based energy management of a residential electro-thermal microgrid based on power forecasting
    (IEEE, 2018) Arcos Avilés, Diego; Gordillo, Rodolfo; Guinjoan Gispert, Francesc; Sanchis Gúrpide, Pablo; Pascual Miqueleiz, Julio María; Marietta, Martin P.; Marroyo Palomo, Luis; Ibarra, Alexander; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this paper, an energy management strategy based on microgrid power forecasting is applied to a residential grid-connected electro-thermal microgrid with the aim of smoothing the power profile exchanged with the grid. The microgrid architecture under study considers electrical and thermal renewable generation, energy storage system (ESS), and loads. The proposed strategy manages the energy stored in the ESS to cover part of the energy required by the thermal generation system for supplying domestic hot water to the residence. The simulation results using real data and the comparison with previous strategy have demonstrated the effectiveness of the proposed strategy.
  • PublicationOpen Access
    Design methodology for the frequency shift method of islanding prevention and analysis of its detection capability
    (Wiley, 2005) Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Coloma, Javier; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Islanding protection is one of the most important sources of discrepancy in gridconnected photovoltaic systems. Even when islanding is not very likely to happen, regulations demand the photovoltaic inverters to implement effective protection methods. Due to its several advantages, the frequency shift method of islanding prevention, commonly known as Sandia Frequency Shift, is one of the most important active methods. This method implements a positive feedback of the frequency that tends to move it outside the trip limits in case of islanding. The method shows a very high detection capability, which depends on both the values of the method parameters and the characteristics of the load that remains in the same power section after islanding. This paper develops a mathematical analysis of the Sandia Frequency Shift method and proposes a new methodology to design its parameters as a trade-off between the detection capability, which is evaluated as a function of the load characteristics, and the distortion that the method could introduce in the grid as a consequence of transitory frequency disturbances. The ability of this methodology to design the method parameters and achieve the highest detection capability is satisfactorily proved by means of both simulation and experimental results on a commercial photovoltaic inverter that implements the method once its parameters have been designed with the proposed methodology.
  • PublicationOpen Access
    Comparison of linear and and small-signal models for inverter-based microgrids
    (IEEE, 2014) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Frequency and voltage regulation in droop-based microgrids is generally modeled using small-signal analysis. In order to ensure accuracy, existing models do not decouple real and reactive power responses. However, the models become complicated and hide the real decoupled dynamics. This paper proposes a simple linear model which makes it possible to discern the different dynamic properties and to readily design the control parameters. The proposed model is validated by comparison with an accurate small-signal model and by simulation results. The effect of not considering the load is also evaluated.
  • PublicationOpen Access
    Adaptive voltage control of the DC/DC boost stage in PV converters with small input capacitor
    (IEEE, 2013) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In the case of photovoltaic (PV) systems, an adequate PV voltage regulation is fundamental in order to both maximize and limit the power. For this purpose, a large input capacitor has traditionally been used. However, when reducing that capacitor size, the nonlinearities of the PV array make the performance of the voltage regulation become highly dependent on the operating point. This paper analyzes the nonlinear characteristics of the PV generator and clearly states their effect on the control of the DC/DC boost stage of commercial converters by means of a linearization around the operating point. Then, it proposes an adaptive control, which enables the use of a small input capacitor preserving at the same time the performance of the original system with a large capacitor. Experimental results are carried out for a commercial converter with a 40 μF input capacitor, and a 4 kW PV array. The results corroborate the theoretical analysis; they evidence the problems of the traditional control, and they validate the proposed control with such a small capacitor.
  • PublicationOpen Access
    Analysis of a CIS based PV generator versus a multicrystalline generator under outdoor long-term exposure
    (IEEE, 2021) Parra Laita, Íñigo de la; Guerra Menjívar, Moisés Roberto; Marcos Álvarez, Javier; García Solano, Miguel; Marroyo Palomo, Luis; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    The worldwide growth of the PV market has been almost exponential during the last years. Together with conventional crystalline (c-Si) PV modules, “new” commercially available PV technologies such as copper indium selenide (CIS) based solar cells have appeared achieving a similar efficiency comparable to c-Si at similar production cost. In addition to the use of cheaper materials, CIS solar cells manufacturers claim some enhancements such as lower temperature coefficient or higher absorption of diffuse light that achieve to reduce the cost of electrical energy. Although several papers deal with this topic, little is known about real comparisons between CIS technology and conventional crystalline at a PV generator level with real test conditions. This paper analyses the in-field performance and degradation of a commercially available CIS solar based PV generator compared to a conventional c-Si one during four years of operation attributing the differences observed to the possible factors that can influence in both technologies.
  • PublicationOpen Access
    Inverter-based PV ramp-rate limitation strategies: minimizing energy losses
    (IEEE, 2022) González Moreno, Alejandro; Marcos Álvarez, Javier; Parra Laita, Íñigo de la; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    This work analyzes the reduction of power generation in strategies that regulate the PV ramp-rate by using inverter limitation. Although the operating principle implies some energy production losses, not all these losses are necessary. Three different strategies were simulated using experimental 5-second data collected throughout a year at a 38.6 MW PV plant, and their energy losses were obtained for different ramprate levels. An improvement in one of these strategies is proposed and evaluated. The main findings suggest that the proposed modification has the potential to drastically reduce annual production losses to insignificant levels. Regardless of the ramp-rate constrain, simulation results evidenced energy losses bellow 1%.
  • PublicationOpen Access
    Parameter-independent battery control based on series and parallel impedance emulation
    (IEEE, 2019) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Guinjoan Gispert, Francesc; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Appropriate voltage control is essential in order to extend the useful life of a battery. However, when universal chargers are used, the design of this control becomes more complicated, given the fact that the battery impedance value may vary considerably, depending not only on the operating point but also on the type, size, and aging level of the battery. This paper first shows how the voltage regulation can become extremely variable or even unstable when the controller is designed according to the proposals in the literature. We then go on to propose the emulation of a series and parallel impedance with the battery, which is easy to implement and achieves a control that is completely independent of the battery connected. The simulation results obtained for batteries with resistances ranging from 10 mΩ to 1Ω, show the problems with existing controls and confirm that the proposed control response is similar for all the possible range of battery resistance.
  • PublicationOpen Access
    On the stability of advanced power electronic converters: the Generalized Bode Criterion
    (IEEE, 2019) Lumbreras Magallón, David; Barrios Rípodas, Ernesto; Urtasun Erburu, Andoni; Ursúa Rubio, Alfredo; Marroyo Palomo, Luis; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    A key factor in the design of power electronic converters is the development of control systems and, in particular, the determination of their stability. Due to ease of application, the Bode criteria are currently the most commonly used stability criteria, both with regard to its classic version and to the subsequent revisions proposed in the literature. However, as these criteria have a limited range of applicability, on occasions it is necessary to resort to other universally applicable criteria such as the Nyquist criterion. Unlike Bode, the Nyquist criterion can always be applied, although its use considerably complicates the tuning of the controller. This paper proposes a new stability criterion, called Generalized Bode Criterion, which is based on the Nyquist criterion and, therefore, always applicable, but calculated from both the Bode diagram and the 0 Hz phase of the open-loop transfer function, thus making the criterion easy to be applied. This way, the proposed criterion combines the advantages of Nyquist and Bode criteria and provides an interesting and useful tool to help in the controller design process. The validation of the criterion is made on a voltage control loop for a stand-alone PV system through simulation and experimental tests made on a voltage control loop for a stand-alone PV system including a battery, a boost converter, an inverter and an ac load. The tests are also used to show the limitations of the classic Bode criterion and its revisions to correctly determine the stability of complex systems. IEEE
  • PublicationOpen Access
    Low complexity energy management strategy for grid profile smoothing of a residential grid-connected microgrid using generation and demand forecasting
    (Elsevier, 2017) Arcos Avilés, Diego; Pascual Miqueleiz, Julio María; Guinjoan Gispert, Francesc; Marroyo Palomo, Luis; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    This paper presents the design of an energy management strategy based on a low complexity Fuzzy Logic Control (FLC) for grid power profile smoothing of a residential grid-connected microgrid including Renewable Energy Sources (RES) and battery Energy Storage System (ESS). The proposed energy management strategy uses generation and demand forecasting to anticipate the future behavior of the microgrid. Accordingly to the microgrid power forecast error and the Battery State-of-Charge (SOC) the proposed strategy performs the suitable control of the grid power. A simulation comparison with previous energy management strategies highlights the advantages of the proposed work minimizing fluctuations and power peaks in the power profile exchanged with the grid while keeping the energy stored in the battery between secure limits. Finally, the experimental validation in a real residential microgrid implemented at Public University of Navarre (UPNA, Spain) demonstrates the proper operation of the proposed strategy achieving a smooth grid power profile and a battery SOC center close to the 75% of the rated battery capacity.
  • PublicationOpen Access
    Dual voltage-current control to provide grid-forming inverters with current limiting capability
    (IEEE, 2021) Erdocia Zabala, Ioseba; Urtasun Erburu, Andoni; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The rapid uptake of renewable energy sources is causing synchronous generators (SG) to be replaced by power electronic inverters meaning these inverters need to offer the characteristics traditionally associated with SG. As a result, it has been proposed that the inverters should be controlled in grid-forming mode in order to support the voltage of the microgrids. Given that these inverters are controlled as a voltage source, temporary events such as short-circuits or overloads could cause currents that are far higher than the rated current. As the semiconductors used in power electronics are highly sensitive to overcurrents, this paper proposes a dual voltage-current control that provides the grid-forming inverters with the capability to quickly limit the current under any overload or short-circuit condition. The proposed method has been validated through experimental tests in stand-alone mode.