Person:
Marroyo Palomo, Luis

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Marroyo Palomo

First Name

Luis

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

ORCID

0000-0002-8344-8374

person.page.upna

495

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Effect of the inner current loop on the voltage regulation for three-phase photovoltaic inverters
    (IEEE, 2020) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    In three-phase grid-connected PV inverters, regulating the input voltage is a fundamental requirement. In order to reduce the influence of the PV non-linear behavior and ensure stability in the whole operating range, the input capacitance is currently oversized. This paper reveals the important effect of the inner current loop in the voltage stability and proposes to use a Proportional (P) controller instead of a PI controller. If tuned following the guidelines provided in this paper, the P controller makes it possible to design a stable voltage loop without increasing the input capacitance, thus reducing the converter cost.
  • PublicationOpen Access
    High-dynamics P-E and Q-f control of PV inverters for strong and weak grids
    (IEEE, 2023-08-31) Urtasun Salinas, Ibai; Urtasun Erburu, Andoni; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    The increase of power electronic-based generators is causing the replacement of synchronous generators, which poses new challenges to electrical grid stability. In particular, when grid-following inverters are connected to weak grids, stability problems related to the PLL used for synchronization arise. To address this issue, grid-forming controls are widely proposed. However, the conventional implementations, such as droop control or virtual synchronous generator, lead to slow power controls, which are not suitable for photovoltaic systems with no storage. Thus, to improve the control dynamics, this paper proposes a new P-E and Q-f control. This control uses the reactive power for grid synchronization, avoiding the use of a PLL, and is valid for both inductive and resistive lines. Furthermore, thanks to the controller design developed in the paper, the control remains rapid and stable for very weak grids. Simulation results validates the control design and shows that the proposed control is much faster than the droop control for all types of grids.