Marroyo Palomo, Luis

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Marroyo Palomo

First Name

Luis

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Adaptive voltage control of the DC/DC boost stage in PV converters with small input capacitor
    (IEEE, 2013) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In the case of photovoltaic (PV) systems, an adequate PV voltage regulation is fundamental in order to both maximize and limit the power. For this purpose, a large input capacitor has traditionally been used. However, when reducing that capacitor size, the nonlinearities of the PV array make the performance of the voltage regulation become highly dependent on the operating point. This paper analyzes the nonlinear characteristics of the PV generator and clearly states their effect on the control of the DC/DC boost stage of commercial converters by means of a linearization around the operating point. Then, it proposes an adaptive control, which enables the use of a small input capacitor preserving at the same time the performance of the original system with a large capacitor. Experimental results are carried out for a commercial converter with a 40 μF input capacitor, and a 4 kW PV array. The results corroborate the theoretical analysis; they evidence the problems of the traditional control, and they validate the proposed control with such a small capacitor.
  • PublicationOpen Access
    Enhancement of the voltage control response in three-phase photovoltaic inverters with small dc capacitors
    (IEEE, 2023) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In the case of photovoltaic (PV) inverters, an adequate dc voltage regulation is fundamental to maximize or limit the power injected into the grid. However, the traditional control requires a large dc capacitance to ensure stability in the whole operating range while the existing alternatives, despite achieving a stable control with a small capacitance, become too slow in the open-circuit area. This paper proposes two control methods to improve this performance. Firstly, a new voltage control with virtual impedance emulation is presented, showing that the response becomes faster in all operating points. Secondly, the control with impedance emulation is combined with a feed-forward compensation, further improving the dynamic response. Both methods are very simple to implement and their superior performance when using a small dc capacitance is verified by means of simulation results.
  • PublicationOpen Access
    DC capacitance reduction in photovoltaic inverters based on PV voltage feed-forward compensation
    (IEEE, 2021) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    In the case of photovoltaic (PV) inverters, an adequate input voltage regulation is fundamental to maximize or limit the power. When employing the traditional control, the input capacitance requires to be oversized in order to reduce the influence of the PV generator and achieve a stable control in the whole operating point. This paper proposes a voltage control method which permits reducing the capacitance by a factor of 5, thereby reducing the system cost. The control includes a feed-forward compensation of the PV voltage, making it possible to achieve a fast and stable control with a simple implementation. The proposed method is verified by simulation, showing the problems of the traditional control and the superior performance of the proposed control.