Marroyo Palomo, Luis
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Marroyo Palomo
First Name
Luis
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
31 results
Search Results
Now showing 1 - 10 of 31
Publication Open Access State-of-charge-based droop control for stand-alone AC supply systems with distributed energy storage(Elsevier, 2015) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe droop method is an advantageous technique for stand-alone AC supply systems, allowing for power sharing among various inverters with no need for communication cables. However, in stand-alone systems with multiple distributed energy storage units, the conventional droop methods are unable to control the storage unit state-of-charge (SOC) in order to change simultaneously. Existing techniques endeavor to solve this problem by changing the slope of the P – f curve however this solution compromises the power response performance. As an alternative, this paper proposes a new SOC-based droop control, whereby the P – f curve is shifted either upwards or downwards according to the battery SOC. The proposed technique makes it possible to select the time constant for the battery SOC convergence and, at the same time, to optimize the power response performance. The paper also shows how the SOC changes when the ratios between the battery capacity and the inverter rated power are different and how the proposed technique can limit the SOC imbalance. Simulation and experimental results corroborate the theoretical analysis.Publication Open Access Analytical design methodology for Litz-wired high-frequency power transformers(IEEE, 2015) Barrios Rípodas, Ernesto; Ursúa Rubio, Alfredo; Marroyo Palomo, Luis; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn the last quarter of a century, high-frequency (HF) transformer design has been one of the major concerns to power electronics designers in order to increase converter power densities and efficiencies. Conventional design methodologies are based on iterative processes and rules of thumb founded more on expertise than on theoretical developments. This paper presents an analytical design methodology for litz-wired HF power transformers that provides a deep insight into the transformer design problem making it a powerful tool for converter designers. The most suitable models for the calculation of core and winding losses and the transformer thermal resistance are first selected and then validated with a 5-kW 50-kHz commercial transformer for a photovoltaic application. Based on these models, the design methodology is finally proposed, reducing the design issue to directly solve a five-variable nonlinear optimization problem. The methodology is illustrated with a detailed design in terms of magnetic material, core geometry, and primary and secondary litz-wire sizing. The optimal design achieves a 46.5% power density increase and a higher efficiency of 99.70% when compared with the commercial one.Publication Open Access Comparison of linear and and small-signal models for inverter-based microgrids(IEEE, 2014) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaFrequency and voltage regulation in droop-based microgrids is generally modeled using small-signal analysis. In order to ensure accuracy, existing models do not decouple real and reactive power responses. However, the models become complicated and hide the real decoupled dynamics. This paper proposes a simple linear model which makes it possible to discern the different dynamic properties and to readily design the control parameters. The proposed model is validated by comparison with an accurate small-signal model and by simulation results. The effect of not considering the load is also evaluated.Publication Open Access Ramp-rate control in large PV plants: battery vs. short-term forecast(IEEE, 2018) Marcos Álvarez, Javier; Parra Laita, Íñigo de la; Cirés Buey, Eulalia; Wang, Guang Chao; García Solano, Miguel; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCThe changeability in the power produced by utility-scale PV plants caused by shadows due to passing clouds can compromise grid stability. Traditionally, some kind of energy storage systems (ESS) is proposed as the solution to reduce power variations below the limits imposed by new grid codes regulations. However, recent short-term forecast sources open the door to control the variability without batteries, using only inverter limitation. This option entails some energy curtailment losses that has not been yet addressed. This paper quantifies these losses for the first time using a meaningful database of 5 s one year data for a 38.5 MW PV plant in a perfect forecast scenery. Finally, we compare the economic cost of installing a lithium-ion battery vs. the inverter limitation solution. The results obtained indicate that battery-less strategies must not be neglected for ramp-rate control, since they can be more cost-effective using perfect forecast for any ramp value.Publication Open Access On the on-site measurement of the degradation rate of crystalline silicon PV modules at plant level(IEEE, 2018) Pascual Miqueleiz, Julio María; Berrueta Irigoyen, Alberto; Marcos Álvarez, Javier; García Solano, Miguel; Marroyo Palomo, Luis; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónThis paper proposes a method for measuring the degradation rate of crystalline silicon PV modules at plant level in two different ways as a form of verification. As actual levels of degradation rate have been observed to be as low as 0.2%/a, the uncertainties make it difficult to measure this value accurately at plant level. However, despite the low value, it is still important to know the actual degradation rate due to its impact on energy yield. In this paper, two ways of measuring the degradation rate at plant level are proposed. These two methods, with different uncertainty sources, are proposed to be used jointly in order to have a better approach to the real value. Finally, an example of measurement in a 1.78 MW PV plant is presented.Publication Open Access Control of a photovoltaic array interfacing current-mode-controlled boost converter based on virtual impedance emulation(IEEE, 2019) Urtasun Erburu, Andoni; Samanes Pascual, Javier; Barrios Rípodas, Ernesto; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenDue to the nonlinear characteristics of a photovoltaic (PV) array, its regulation is highly dependent on the operating point. Focusing on a dc-dc boost converter, this paper first shows how the PV voltage and inductor current controls are affected by the PV array. It then proposes to emulate an impedance virtually connected to the PV array, making it possible to greatly improve the control robustness. Thanks to the proposed strategy, the crossover frequency variation for the whole operating range is reduced from 42 times for the traditional control to 3.5 times when emulating parallel resistance or to 1.4 times when emulating series and parallel resistances, all with simple implementation. Experimental results with a commercial PV inverter and a 4-kWp PV array validate the theoretical analysis and demonstrate the superior performance of the proposed control.Publication Open Access Implementation and control of a residential electrothermal microgrid based on renewable energies, a hybrid storage system and demand side management(MDPI, 2014) Pascual Miqueleiz, Julio María; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako GobernuaThis paper proposes an energy management strategy for a residential electrothermal microgrid, based on renewable energy sources. While grid connected, it makes use of a hybrid electrothermal storage system, formed by a battery and a hot water tank along with an electrical water heater as a controllable load, which make possible the energy management within the microgrid. The microgrid emulates the operation of a single family home with domestic hot water (DHW) consumption, a heating, ventilation and air conditioning (HVAC) system as well as the typical electric loads. An energy management strategy has been designed which optimizes the power exchanged with the grid profile in terms of peaks and fluctuations, in applications with high penetration levels of renewables. The proposed energy management strategy has been evaluated and validated experimentally in a full scale residential microgrid built in our Renewable Energy Laboratory, by means of continuous operation under real conditions. The results show that the combination of electric and thermal storage systems with controllable loads is a promising technology that could maximize the penetration level of renewable energies in the electric system.Publication Open Access The potential of forecasting in reducing the LCOE in PV plants under ramp-rate restrictions(Elsevier, 2019) Cirés Buey, Eulalia; Marcos Álvarez, Javier; Parra Laita, Íñigo de la; García Solano, Miguel; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenAn increasing number of grid codes are requiring the limitation of the PV output power fluctuation over a given time scale. Batteries represent the most obvious solution to smooth power fluctuations, with the corresponding negative impact on the PV energy cost. However, short-term forecasting is currently being proposed as a tool to reduce battery capacity requirements or even completely remove it. Although these solutions decrease or avoid the battery cost, it also entails some energy curtailment losses which obviously raise the final cost of PV energy. This energy losses, currently unknown, are independent of the forecasting accuracy and represent the minimal additional cost in the hypothetical case of a perfect prediction. Thus, this paper compares Levelized Cost of Energy (LCOE) of three ramp-rate control strategies in order to determine which would give the lowest cost: battery-based, ideal short-term forecasting, or a combination of both. Results show that curtailment losses would be small enough to make battery-less strategy an appropriate choice, so it is worthwhile improving short-term forecasting in view of the potential LCOE savings. Database is taken from high resolution measurements recorded for over a year at 8 PV plants ranging from 1 to 46 MWp.Publication Open Access Adaptive voltage control of the DC/DC boost stage in PV converters with small input capacitor(IEEE, 2013) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn the case of photovoltaic (PV) systems, an adequate PV voltage regulation is fundamental in order to both maximize and limit the power. For this purpose, a large input capacitor has traditionally been used. However, when reducing that capacitor size, the nonlinearities of the PV array make the performance of the voltage regulation become highly dependent on the operating point. This paper analyzes the nonlinear characteristics of the PV generator and clearly states their effect on the control of the DC/DC boost stage of commercial converters by means of a linearization around the operating point. Then, it proposes an adaptive control, which enables the use of a small input capacitor preserving at the same time the performance of the original system with a large capacitor. Experimental results are carried out for a commercial converter with a 40 μF input capacitor, and a 4 kW PV array. The results corroborate the theoretical analysis; they evidence the problems of the traditional control, and they validate the proposed control with such a small capacitor.Publication Open Access Modeling of small wind turbines based on PMSG with diode bridge for sensorless maximum power tracking(Elsevier, 2013) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; San Martín Biurrun, Idoia; López Taberna, Jesús; Marroyo Palomo, Luis; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe Permanent Magnet Synchronous Generator (PMSG) with diode bridge is frequently used in small Wind Energy Conversion Systems (WECS). This configuration is robust and cheap, and therefore suitable for small WECS. In order to achieve Maximum Power Point Tracking (MPPT) with no mechanical sensors, it is possible to impose the relationship between the DC voltage and the DC current on the optimum operating points. However, this relationship is difficult to calculate theoretically since the whole system is involved. In fact, as there is no model of the whole system in the literature, the optimum curve IL*(Vdc) is obtained with experimental tests or simulations. This paper develops an accurate model of the whole WECS, thereby making it possible to relate the electrical variables to the mechanical ones. With this model, it is possible to calculate the optimum curve IL*(Vdc) from commonly-known system parameters and to control the system from the DC side. Experimental results validate the theoretical analysis and show that maximum power is extracted for actual wind speed profiles.