Person:
Marroyo Palomo, Luis

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Marroyo Palomo

First Name

Luis

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

ORCID

0000-0002-8344-8374

person.page.upna

495

Name

Search Results

Now showing 1 - 10 of 31
  • PublicationOpen Access
    On the on-site measurement of the degradation rate of crystalline silicon PV modules at plant level
    (IEEE, 2018) Pascual Miqueleiz, Julio María; Berrueta Irigoyen, Alberto; Marcos Álvarez, Javier; García Solano, Miguel; Marroyo Palomo, Luis; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    This paper proposes a method for measuring the degradation rate of crystalline silicon PV modules at plant level in two different ways as a form of verification. As actual levels of degradation rate have been observed to be as low as 0.2%/a, the uncertainties make it difficult to measure this value accurately at plant level. However, despite the low value, it is still important to know the actual degradation rate due to its impact on energy yield. In this paper, two ways of measuring the degradation rate at plant level are proposed. These two methods, with different uncertainty sources, are proposed to be used jointly in order to have a better approach to the real value. Finally, an example of measurement in a 1.78 MW PV plant is presented.
  • PublicationOpen Access
    Control strategies to smooth short-term power fluctuations in large photovoltaic plants using battery storage systems
    (MDPI, 2014) Marcos Álvarez, Javier; Parra Laita, Íñigo de la; García Solano, Miguel; Marroyo Palomo, Luis; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    The variations in irradiance produced by changes in cloud cover can cause rapid fluctuations in the power generated by large photovoltaic (PV) plants. As the PV power share in the grid increases, such fluctuations may adversely affect power quality and reliability. Thus, energy storage systems (ESS) are necessary in order to smooth power fluctuations below the maximum allowable. This article first proposes a new control strategy (step-control), to improve the results in relation to two state-of-the-art strategies, ramp-rate control and moving average. It also presents a method to quantify the storage capacity requirements according to the three different smoothing strategies and for different PV plant sizes. Finally, simulations shows that, although the moving-average (MA) strategy requires the smallest capacity, it presents more losses (2–3 times more) and produces a much higher number of cycles over the ESS (around 10 times more), making it unsuitable with storage technologies as lithium-ion. The step-control shown as a better option in scenery with exigent ramp restrictions (around 2%/min) and distributed generation against the ramp-rate control in all ESS key aspects: 20% less of capacity, up to 30% less of losses and a 40% less of ageing. All the simulations were based on real PV production data, taken every 5 s in the course of one year (2012) from a number of systems with power outputs ranging from 550 kW to 40 MW.
  • PublicationOpen Access
    Fuzzy logic-based energy management system design for residential grid-connected microgrids
    (IEEE, 2018) Arcos Avilés, Diego; Pascual Miqueleiz, Julio María; Marroyo Palomo, Luis; Sanchis Gúrpide, Pablo; Guinjoan Gispert, Francesc; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Gobierno de Navarra / Nafarroako Gobernua
    This paper presents the design of a low complexity fuzzy logic controller of only 25-rules to be embedded in an energy management system for a residential grid-connected microgrid including renewable energy sources and storage capability. The system assumes that neither the renewable generation nor the load demand is controllable. The main goal of the design is to minimize the grid power profile fluctuations while keeping the battery state of charge within secure limits. Instead of using forecasting-based methods, the proposed approach use both the microgrid energy rate-of-change and the battery state of charge to increase, decrease, or maintain the power delivered/absorbed by the mains. The controller design parameters (membership functions and rule-base) are adjusted to optimize a pre-defined set of quality criteria of the microgrid behavior. A comparison with other proposals seeking the same goal is presented at simulation level, whereas the features of the proposed design are experimentally tested on a real residential microgrid implemented at the Public University of Navarre.
  • PublicationOpen Access
    Fuzzy-based energy management of a residential electro-thermal microgrid based on power forecasting
    (IEEE, 2018) Arcos Avilés, Diego; Gordillo, Rodolfo; Guinjoan Gispert, Francesc; Sanchis Gúrpide, Pablo; Pascual Miqueleiz, Julio María; Marietta, Martin P.; Marroyo Palomo, Luis; Ibarra, Alexander; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this paper, an energy management strategy based on microgrid power forecasting is applied to a residential grid-connected electro-thermal microgrid with the aim of smoothing the power profile exchanged with the grid. The microgrid architecture under study considers electrical and thermal renewable generation, energy storage system (ESS), and loads. The proposed strategy manages the energy stored in the ESS to cover part of the energy required by the thermal generation system for supplying domestic hot water to the residence. The simulation results using real data and the comparison with previous strategy have demonstrated the effectiveness of the proposed strategy.
  • PublicationOpen Access
    On the stability of advanced power electronic converters: the Generalized Bode Criterion
    (IEEE, 2019) Lumbreras Magallón, David; Barrios Rípodas, Ernesto; Urtasun Erburu, Andoni; Ursúa Rubio, Alfredo; Marroyo Palomo, Luis; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    A key factor in the design of power electronic converters is the development of control systems and, in particular, the determination of their stability. Due to ease of application, the Bode criteria are currently the most commonly used stability criteria, both with regard to its classic version and to the subsequent revisions proposed in the literature. However, as these criteria have a limited range of applicability, on occasions it is necessary to resort to other universally applicable criteria such as the Nyquist criterion. Unlike Bode, the Nyquist criterion can always be applied, although its use considerably complicates the tuning of the controller. This paper proposes a new stability criterion, called Generalized Bode Criterion, which is based on the Nyquist criterion and, therefore, always applicable, but calculated from both the Bode diagram and the 0 Hz phase of the open-loop transfer function, thus making the criterion easy to be applied. This way, the proposed criterion combines the advantages of Nyquist and Bode criteria and provides an interesting and useful tool to help in the controller design process. The validation of the criterion is made on a voltage control loop for a stand-alone PV system through simulation and experimental tests made on a voltage control loop for a stand-alone PV system including a battery, a boost converter, an inverter and an ac load. The tests are also used to show the limitations of the classic Bode criterion and its revisions to correctly determine the stability of complex systems. IEEE
  • PublicationOpen Access
    Adjustment of the fuzzy logic controller parameters of the energy management strategy of a grid-tied domestic electro-thermal microgrid using the Cuckoo search algorithm
    (IEEE, 2019) Arcos Avilés, Diego; García Gutiérrez, Gabriel; Guinjoan Gispert, Francesc; Pascual Miqueleiz, Julio María; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    During the last century, population growth, together with economic development, has considerably increased the energy demand and, although renewable energies are becoming an alternative, still total energy supply is mainly non-renewable, causing well-known negative effects such as pollution and global warming. On the other hand, technological advances have allowed the development of increasingly efficient distributed generation systems and the emergence of microgrids, whose studies have been focused on architecture, elements, and objectives of the associated energy management strategies. In this regard, energy management strategies based on a Fuzzy Logic controller have been developed for electro-thermal microgrids where parameter optimization has been carried out through heuristic procedures of trial and error with acceptable results but involving a high computational cost. To solve the aforementioned drawbacks, in the present work the use of Cuckoo Search optimization nature-inspired algorithm that allows the adjustment of Fuzzy Logic controller parameters and ensures a higher quality of energy management is proposed. Obtained results show encouraging outcomes for the use of these meta-heuristic optimization algorithms.
  • PublicationOpen Access
    Control strategy for an integrated photovoltaic-battery system
    (IEEE, 2017) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    In photovoltaic-battery systems, more attention is usually paid to the MPPT control while the battery management is put aside. This paper proposes two control strategies for an integrated PV-battery system, both of them making it possible to perform MPPT or regulate the battery voltage to its maximum value in order to prevent it from overcharging. Simulation results prove the feasibility of both controls.
  • PublicationOpen Access
    High frequency power transformers with foil windings: maximum interleaving and optimal design
    (IEEE, 2015) Barrios Rípodas, Ernesto; Urtasun Erburu, Andoni; Ursúa Rubio, Alfredo; Marroyo Palomo, Luis; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Foil conductors and primary and secondary interleaving are normally used to minimize winding losses in high frequency transformers used for high-current power applications. However, winding interleaving complicates the transformer assembly, since taps are required to connect the winding sections, and also complicates the transformer design, since it introduces a new tradeoff between minimizing losses and reducing the construction difficulty. This paper presents a novel interleaving technique, named maximum interleaving, that makes it possible to minimize the winding losses as well as the construction difficulty. An analytical design methodology is also proposed in order to obtain free cooled transformers with a high efficiency, low volume and, therefore, a high power density. For the purpose of evaluating the advantages of the proposed maximum interleaving technique, the methodology is applied to design a transformer positioned in the 5 kW 50 kHz intermediate high frequency resonant stage of a commercial PV inverter. The proposed design achieves a transformer power density of 28 W/cm3 with an efficiency of 99.8%. Finally, a prototype of the maximum-interleaved transformer is assembled and validated satisfactorily through experimental tests.
  • PublicationOpen Access
    DC capacitance reduction in three-phase photovoltaic inverters by using virtual impedance emulation
    (IEEE, 2019) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    DC voltage regulation in grid-connected three-phase PV inverters is a fundamental requirement. In order to reduce the influence of the PV non-linear behavior and ensure stability in the whole operating range, the input capacitance in high-power inverters is currently oversized, thus increasing the converter cost. This paper proposes a control method which emulates a virtual impedance in parallel with the PV generator, making it possible to reduce the capacitance by a factor of 5. Simulation results confirm that the proposed control is stable and fast enough in the whole operating range with such a small capacitor.
  • PublicationOpen Access
    Compensation of forecast error in large PV plants with battery storage: associated strategies
    (2017) Marcos Álvarez, Javier; Parra Laita, Íñigo de la; Muñoz Escribano, Mikel; García Solano, Miguel; Marroyo Palomo, Luis; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    As penetration rates of utility-scale photovoltaics (PV) increases, large PV plants will participate in the daily wholesale electricity market in the same way that wind farms. Then, PV plant owner can receive some kind of economic penalty depending on the forecast deviation. This opens the way to use a battery energy storage system (BESS) to compensate the prediction errors. Taking advance of the several 1-hour intra-diary market sessions, the PV plant owner can correct the prediction for the next hours. Hence, a 1-hour BESS SOC control can be implemented to avoid large energy requirements. Here we present two novel strategies which allow a large PV-BESS plant to fulfil the programme referred.