Pérez Herrera, Rosa Ana
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Pérez Herrera
First Name
Rosa Ana
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
4 results
Search Results
Now showing 1 - 4 of 4
Publication Open Access Liquid level sensor based on dynamic Fabry–Perot interferometers in processed capillary fiber(Springer Nature, 2021) Roldán Varona, Pablo; Pérez Herrera, Rosa Ana; Rodríguez Cobo, Luis; Reyes González, Luis; López-Amo Sáinz, Manuel; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this work, a novel optical fiber sensor capable of measuring both the liquid level and its refractive index is designed, manufactured and demonstrated through simulations and experimentally. For this, a silica capillary hollow-core fiber is used. The fiber, with a sensing length of 1.55 mm, has been processed with a femtosecond laser, so that it incorporates four holes in its structure. In this way, the liquid enters the air core, and it is possible to perform the sensing through the Fabry–Perot cavities that the liquid generates. The detection mode is in reflection. With a resolution of 4 μm (liquid level), it is in the state of the art of this type of sensor. The system is designed so that in the future it will be capable of measuring the level of immiscible liquids, that is, liquids that form stratified layers. It can be useful to determine the presence of impurities in tanks.Publication Open Access Multiparameter sensor based on a multiinterferometric serial configuration for temperature and strain measurements(IEEE, 2021) Pérez Herrera, Rosa Ana; Bravo Acha, Mikel; Leandro González, Daniel; Novais, Susana; Pradas Martínez, Javier; López-Amo Sáinz, Manuel; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this work, a multi-parameter point sensor based on the combination of Fabry-Perot (FP) and the anti-resonant (AR) reflecting guidance in cascade configuration is proposed and experimentally demonstrated. This structure, based on FP interference and AR reflecting guidance, was fabricated with two different air micro-cavities. The attained experimental results showed different strain and temperature sensitivities for the antiresonance contribution. However, when analyzing the FP interference, only strain sensitivity was observed, demonstrating that this air micro-cavity was also insensitive to temperature variations.Publication Open Access Gamma radiation-induced effects over an optical fiber laser: towards new sensing applications(MDPI, 2020) Pérez Herrera, Rosa Ana; Stancalie, Andrei; Cabezudo Sánchez-Valverde, Pablo Miguel; Sporea, Dan; López-Amo Sáinz, Manuel; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónIn the present work, the effect of gamma radiation on the performance of different types of erbium-doped fibers (EDFs) when they are used in a fiber ring cavity (FRC) configuration is studied. Several pieces of commercial EDF are gamma-ray irradiated with different doses to evaluate the output power variations over time. The influence of different doses, from 150 Gy to 1000 Gy, over the output power level measurement and their amplified spontaneous emission (ASE) are experimentally evaluated both in the C and L bands. By using an FRC configuration we can detect the presence of gamma radiation. We can also estimate the irradiation doses applied to EDFs by measuring the slope of the short-term emission power.Publication Open Access Spatial-frequency multiplexing of high-sensitivity liquid level sensors based on multimode interference micro-fibers(Elsevier, 2020) Galarza Galarza, Marko; Pérez Herrera, Rosa Ana; Leandro González, Daniel; Júdez Colorado, Aitor; López-Amo Sáinz, Manuel; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThis paper shows a new fiber optic sensor multiplexed system for liquid level sensing. Biconical fibertapers converging at a 40 mm-long micro-fiber are used as transducers. The tapers are designed to providethe propagation of the two main cylindrical modes in the micro-fiber avoiding higher order modes ormodes with other symmetries. The liquid level is calculated in real time from the measurement of thefrequency and phase components of the spectral interference pattern of the submerged micro-fiber.The system is fully characterized by theoretical simulations in terms of the sensitivity as a function ofthe most responsive parameter, which is the width of the micro-fiber. Phase sensibilities of 3.7 rad/mmare experimentally obtained and values as high as 11.4 rad/mm are theoretically predicted. The strongdependence of the spatial frequency with the width of the micro-fiber has been used to multiplex threesensors in series in this domain. The maximum detected crosstalk between sensors is 0.2 rad/mm.