Malvè, Mauro

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Malvè

First Name

Mauro

person.page.departamento

Ingeniería

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 6 of 6
  • PublicationOpen Access
    Influence of a commercial antithrombotic filter on the caval blood flow during neutra and valsalva maneuver
    (ASME, 2017) Nicolás, M.; Lucea, B.; Laborda, A.; Peña, Estefanía; Malvè, Mauro; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    Anticoagulants are the treatment of choice for pulmonary embolism. When these fail or are contraindicated, vena cava filters are effective devices for preventing clots from the legs from migrating to the lung. Many uncertainties exist when a filter is inserted, especially during physiological activity such as normal breathing and the Valsalva maneuver. These activities are often connected with filter migration and vena cava damage due to the various related vein geometrical configurations. In this work, we analyzed the response of the vena cava during normal breathing and Valsalva maneuver, for a healthy vena cava and after insertion of a commercial Günther-Tulip® filter. Validated computational fluid dynamics (CFD) and patient specific data are used for analyzing blood flow inside the vena cava during these maneuvers. While during normal breathing, the vena cava flow can be considered almost stationary with a very low pressure gradient, during Valsalva the extravascular pressure compresses the vena cava resulting in a drastic reduction of the vein section, a global flow decrease through the cava but increasing the velocity magnitude. This change in the section is altered by the presence of the filter which forces the section of the vena cava before the renal veins to keep open. The effect of the presence of the filter is investigated during these maneuvers showing changes in wall shear stress and velocity patterns.
  • PublicationOpen Access
    In vitro comparison of Günther Tulip and Celect filters. Testing filtering efficiency and pressure drop
    (Elsevier, 2015) Nicolás, M.; Malvè, Mauro; Peña, Estefanía; Martínez, Miguel Ángel; Leask, R.; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    In this study, the trapping ability of the Günther Tulip and Celect inferior vena cava filters was evaluated. Thrombus capture rates of the filters were tested in vitro in horizontal position with thrombus diameters of 3 and 6 mm and tube diameter of 19 mm. The filters were tested in centered and tilted positions. Sets of 30 clots were injected into the model and the same process was repeated 20 times for each different condition simulated. Pressure drop experienced along the system was also measured and the percentage of clots captured was recorded. The Günther Tulip filter showed superiority in all cases, trapping almost 100% of 6 mm clots both in an eccentric and tilted position and trapping 81.7% of the 3 mm clots in a centered position and 69.3% in a maximum tilted position. The efficiency of all filters tested decreased as the size of the embolus decreased and as the filter was tilted. The injection of 6 clots raised the pressure drop to 4.1 mmHg, which is a reasonable value that does not cause the obstruction of blood flow through the system.
  • PublicationOpen Access
    Impact of geometric and hemodynamic changes on a mechanobiological model of atherosclerosis
    (Elsevier, 2024) Hernández-López, Patricia; Cilla, Myriam; Martínez, Miguel Ángel; Peña, Estefanía; Malvè, Mauro; Ingeniería; Ingeniaritza
    Background and objective: in this work, the analysis of the importance of hemodynamic updates on a mechanobiological model of atheroma plaque formation is proposed. Methods: for that, we use an idealized and axisymmetric model of carotid artery. In addition, the behavior of endothelial cells depending on hemodynamical changes is analyzed too. A total of three computational simulations are carried out and their results are compared: an uncoupled model and two models that consider the opposite behavior of endothelial cells caused by hemodynamic changes. The model considers transient blood flow using the Navier-Stokes equation. Plasma flow across the endothelium is determined with Darcy's law and the Kedem-Katchalsky equations, considering the three-pore model, which is also employed for the flow of substances across the endothelium. The behavior of the considered substances in the arterial wall is modeled with convection¿diffusion¿reaction equations, and the arterial wall is modeled as a hyperelastic Yeoh's material. Results: significant variations are noted in both the morphology and stenosis ratio of the plaques when comparing the uncoupled model to the two models incorporating updates for geometry and hemodynamic stimuli. Besides, the phenomenon of double-stenosis is naturally reproduced in the models that consider both geometric and hemodynamical changes due to plaque growth, whereas it cannot be predicted in the uncoupled model. Conclusions: the findings indicate that integrating the plaque growth model with geometric and hemodynamic settings is essential in determining the ultimate shape and dimensions of the carotid plaque.
  • PublicationOpen Access
    A parametric model for studying the aorta hemodynamics by means of the computational fluid dynamics
    (Elsevier, 2020) Cilla, Myriam; Casales, Marina; Peña, Estefanía; Martínez, Miguel Ángel; Malvè, Mauro; Ingeniería; Ingeniaritza
    Perturbed aorta hemodynamics, as for the carotid and the coronary artery, has been identified as potential predicting factor for cardiovascular diseases. In this study, we propose a parametric study based on the computational fluid dynamics with the aim of providing information regarding aortic disease. In particular, the blood flow inside a parametrized aortic arch is computed as a function of morphological changes of baseline aorta geometry. Flow patterns, wall shear stress, time average wall shear stress and oscillatory shear index were calculated during the cardiac cycle. The influence of geometrical changes on the hemodynamics and on these variables was evaluated. The results suggest that the distance between inflow and aortic arch and the angle between aortic arch and descending trunk are the most influencing parameters regarding the WSS-related indices while the effect of the inlet diameter seems limited. In particular, an increase of the aforementioned distance produces a reduction of the spatial distribution of the higher values of the time average wall shear stress and of the oscillatory shear index independently on the other two parameters while an increase of the angle produce an opposite effect. Moreover, as expected, the analysis of the wall shear stress descriptors suggests that the inlet diameter influences only the flow intensity. As conclusion, the proposed parametric study can be used to evaluate the aorta hemodynamics and could be also applied in the future, for analyzing pathological cases and virtual situations, such as pre- and/or post-operative cardiovascular surgical states that present enhanced changes in the aorta morphology yet promoting important variations on the considered indexes.
  • PublicationOpen Access
    On studying the interaction between different stent models and rabbit tracheal tissue: numerical, endoscopic and histological comparison
    (Biomedical Engineering Society, 2016) Chaure, J.; Serrano, C.; Fernández-Parra, Rocío; Peña, Estefanía; Malvè, Mauro; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    Stenting technique is employed worldwide for treating atherosclerotic vessel and tracheal stenosis. Both diseases can be treated by means of metallic stents which present advantages but are affected by the main problem of restenosis of the stented area. In this study we have built a rabbit trachea numerical model and we have analyzed it before and after insertion and opening of two types of commercial stent: a Zilver® FlexTM Stent and a WallStentTM. In experimental parallel work, two types of stent were implanted in 30 New Zealand rabbits divided in two groups of 10 animals corresponding to each stent type and a third group made up of 10 animals without stent. The tracheal wall response was assessed by means of computerized tomography by endoscopy, macroscopic findings and histopathological study 90 days after stent deployment. Three idealized trachea models, one model for each group, were created in order to perform the computational study. The animal model was used to validate the numerical findings and to attempt to find qualitative correlations between numerical and experimental results. Experimental findings such as inflammation, granuloma and abnormal tissue growth, assessed from histomorphometric analyses were compared with derived numerical parameters such as wall shear stress (WSS) and maximum principal stress. The direct comparison of these parameters and the biological response supports the hypothesis that WSS and tensile stresses may lead to a greater tracheal epithelium response within the stented region, with the latter seeming to have the dominant role. This study may be helpful for improving stent design and demonstrates the feasibility offered by in-silico investigated tracheal structural and fluid dynamics.
  • PublicationOpen Access
    Numerical and experimental study of the fluid flow through a medical device
    (Elsevier, 2015) Nicolás, M.; Palero, V. R.; Peña, Estefanía; Arroyo, M. P.; Malvè, Mauro; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    The purpose of this paper is to verify a commercial software based fluid–structure interaction scheme for the inferior vena cava. Vena cava deep thrombosis (TVP) is a potentially deathly disease consequent to pulmonary thromboembolism (TEP). TEP consist in the obstruction of the pulmonary artery due to a blood clot traveling in the cardiovascular system and is treated with anticoagulants and inferior vena cava filters. Flow fields along the vena cava and an antithrombus filter were studied and compared with a Particle Image Velocimetry (PIV) based model to validate the numerical model. The results show that the fluid–structure interaction (FSI) models are valid and can be used to study the deformations in the inferior vena cava wall using patient-specific geometries.