Malvè, Mauro
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Malvè
First Name
Mauro
person.page.departamento
Ingeniería
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
24 results
Search Results
Now showing 1 - 10 of 24
Publication Open Access Computational analysis of polymeric biodegradable and customizable airway stent designs(MDPI, 2024-06-14) Ayechu Abendaño, Ada; Pérez-Jiménez, Aurora; Sánchez-Matás, Carmen; López-Villalobos, José Luis; Díaz Jiménez, Cristina; Fernández-Parra, Rocío; Malvè, Mauro; Ingeniería; IngeniaritzaThe placement of endotracheal prostheses is a procedure used to treat tracheal lesions when no other surgical options are available. Unfortunately, this technique remains controversial. Both silicon and metallic stents are used with unpredictable success rates, as they have advantages but also disadvantages. Typical side effects include restenosis due to epithelial hyperplasia, obstruction and granuloma formation. Repeat interventions are often required. Biodegradable stents are promising in the field of cardiovascular biomechanics but are not yet approved for use in the respiratory system. The aim of the present study is to summarize important information and to evaluate the role of different geometrical features for the fabrication of a new tracheo-bronchial prosthesis prototype, which should be biodegradable, adaptable to the patient’s lesion and producible by 3D printing. A parametric design and subsequent computational analysis using the finite element method is carried out. Two different stent designs are parameterized and analyzed. The biodegradable material chosen for simulations is polylactic acid. Experimental tests are conducted for assessing its mechanical properties. The role of the key design parameters on the radial force of the biodegradable prosthesis is investigated. The computational results allow us to elucidate the role of the pitch angle, the wire thickness and the number of cells or units, among other parameters, on the radial force. This work may be useful for the design of ad hoc airway stents according to the patient and type of lesion.Publication Open Access Effect of annealing on the mechanical properties of composites of PLA mixed with Mg and with HA(MDPI, 2025-04-28) Sánchez González, Carmen; Pérez Jiménez, Aurora Fernanda; Malvè, Mauro; Díaz Jiménez, Cristina; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2Polylactic acid (PLA) is a bioresorbable and biocompatible material and is a promising alternative to the current materials used for permanent implants as it has osteosynthesis properties. However, this material has some drawbacks due to its low mechanical and thermal resistance after 3D printing. Extensive research has been conducted to improve the properties of this material, for example, with the addition of other compounds, such as magnesium (Mg) or Hydroxyapatite (HA). These reinforced materials have been shown to reduce the internal stress of the matrix of PLA, improving the thermal, optical and structural properties of the material, even though the performance achieved is lower than needed to be implanted. In addition, although it is known that the addition of Mg or HA affects the mechanical performance of the material, mechanical properties have not been studied in the literature. Thus, the aim of this study is to research the effect of thermal post-processing based on annealing of composites made of PLA with Mg and PLA with HA, manufactured by fused filament fabrication, with the goal of finding an improvement in the mechanical properties of these materials. As a result, different designs of annealing processes have been studied with different reinforced materials and their mechanical properties have been compared, studying axial traction and compression, radial compression as well as flexibility, among others. The comparative results achieved show the relevance of the design of the annealing process for the improvement of the mechanical properties of these materials.Publication Open Access Numerical and experimental study of the fluid flow through a medical device(Elsevier, 2015) Nicolás, M.; Palero, V. R.; Peña, Estefanía; Arroyo, M. P.; Malvè, Mauro; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen IngeniaritzaThe purpose of this paper is to verify a commercial software based fluid–structure interaction scheme for the inferior vena cava. Vena cava deep thrombosis (TVP) is a potentially deathly disease consequent to pulmonary thromboembolism (TEP). TEP consist in the obstruction of the pulmonary artery due to a blood clot traveling in the cardiovascular system and is treated with anticoagulants and inferior vena cava filters. Flow fields along the vena cava and an antithrombus filter were studied and compared with a Particle Image Velocimetry (PIV) based model to validate the numerical model. The results show that the fluid–structure interaction (FSI) models are valid and can be used to study the deformations in the inferior vena cava wall using patient-specific geometries.Publication Open Access Salbutamol transport and deposition in the upper and lower airway with different devices in cats: a computational fluid dynamics approach(MDPI, 2021) Fernández-Parra, Rocío; Pey, Pascaline; Reinero, Carol; Malvè, Mauro; Ingeniería; IngeniaritzaPressurized metered-dose inhalers (pMDI) with or without spacers are commonly used for the treatment of feline inflammatory airway disease. During traditional airways treatments, a substantial amount of drugs are wasted upstream of their target. To study the efficiency of commonly used devices in the transport of inhaled salbutamol, different computational models based on two healthy adult client-owned cats were developed. Computed tomographic images from one cat were used to generate a three-dimensional geometry, and two masks (spherical and conical shapes) and two spacers (10 and 20 cm) completed the models. A second cat was used to generate a second model having an endotracheal tube (ETT) with and without the same spacers. Airflow, droplet spray transport, and deposition were simulated and studied using computational fluid dynamics techniques. Four regions were evaluated: device, upper airways, primary bronchi, and downstream lower airways/parenchyma ('lung'). Regardless of the model, most salbutamol is deposited in devices and/or upper airways. In the first model, particles reaching the lung varied between 5.8 and 25.8%. Compared with the first model, pMDI application through the ETT with or without a spacer had significantly higher percentages of particles reaching the lung (p = 0.006).Publication Open Access Topological features dictate the mechanics of the mammalian brains(Elsevier, 2020) Sáez, Pablo; Duñó, C.; Sun, L.Y.; Antonovaite, N.; Malvè, Mauro; Tost, D.; Goriely, A.; Ingeniería; IngeniaritzaUnderstanding brain mechanics is crucial in the study of pathologies involving brain deformations such as tumor, strokes, or in traumatic brain injury. Apart from the intrinsic mechanical properties of the brain tissue, the topology and geometry of the mammalian brains are particularly important for its mechanical response. We use computational methods in combination with geometric models to understand the role of these features. We find that the geometric quantifiers such as the gyrification index play a fundamental role in the overall mechanical response of the brain. We further demonstrate that topological diversity in brain models is more important than differences in mechanical properties: Topological differences modify not only the stresses and strains in the brain but also its spatial distribution. Therefore, computational brain models should always include detailed geometric information to generate accurate mechanical predictions. These results suggest that mammalian brain gyrification acts as a damping system to reduce mechanical damage in large-mass brain mammals. Our results are relevant in several areas of science and engineering related to brain mechanics, including the study of tumor growth, the understanding of brain folding, and the analysis of traumatic brain injuries.Publication Open Access Fluid-structure simulation of a general non-contact tonometry. A required complexity?(Elsevier, 2018) Ariza Gracia, Miguel A.; Wu, Wei; Calvo, Begoña; Malvè, Mauro; Büchler, Philippe; Ingeniería; IngeniaritzaUnderstanding corneal biomechanics is important for applications regarding refractive surgery prediction outcomes and the study of pathologies affecting the cornea itself. In this regard, non-contact tonometry (NCT) is gaining interest as a non-invasive diagnostic tool in ophthalmology, and is becoming an alternative method to characterize corneal biomechanics in vivo. In general, identification of material parameters of the cornea from a NCT test relies on the inverse finite element method, for which an accurate and reliable modelization of the test is required. This study explores four different modeling strategies ranging from pure structural analysis up to a fluid–structure interaction model considering the air–cornea and humor–cornea interactions. The four approaches have been compared using clinical biomarkers commonly used in ophthalmology. Results from the simulations indicate the importance of considering the humors as fluids and the deformation of the cornea when determining the pressure applied by the air-jet during the test. Ignoring this two elements in the modeling lead to an overestimation of corneal displacement and therefore an overestimation of corneal stiffness when using the inverse finite element method.Publication Open Access CFD-based comparison study of a new flow diverting stent and commercially-available ones for the treatment of cerebral aneurysms(MDPI, 2019) Catalán Echeverría, Borja; Kelly, Michael E.; Peeling, Lissa; Bergstrom, Donald; Chen, Xiongbiao; Malvè, Mauro; Ingeniería; IngeniaritzaFlow-diverting stents (FDSs) show considerable promise for the treatment of cerebral aneurysms by diverting blood flow away from the aneurysmal sacs, however, post-treatment complications such as failure of occlusion and subarachnoid haemorrhaging remain and vary with the FDS used. Based on computational fluid dynamics (CFD), this study aimed to investigate the performance of a new biodegradable stent as compared to two metallic commercially available FDSs. CFD models were developed for an idealized cerebral artery with a sidewall aneurysmal sac treated by deploying the aforementioned stents of different porosities (90, 80, and 70%) respectively. By using these models, the simulation and analysis were performed, with a focus on comparing the local hemodynamics or the blood flow in the stented arteries as compared to the one without the stent deployment. For the comparison, we computed and compared the flow velocity, wall shear stress (WSS) and pressure distributions, as well as the WSS related indices, all of which are of important parameters for studying the occlusion and potential rupture of the aneurysm. Our results illustrate that the WSS decreases within the aneurysmal sac on the treated arteries, which is more significant for the stents with lower porosity or finer mesh. Our results also show that the maximum WSS near the aneurysmal neck increases regardless of the stents used. In addition, the WSS related indices including the time-average WSS, oscillatory shear index and relative residence time show different distributions, depending on the FDSs. Together, we found that the finer mesh stents provide more flow reduction and smaller region characterized by high oscillatory shear index, while the new stent has a higher relative residence time.Publication Open Access In vitro comparison of Günther Tulip and Celect filters. Testing filtering efficiency and pressure drop(Elsevier, 2015) Nicolás, M.; Malvè, Mauro; Peña, Estefanía; Martínez, Miguel Ángel; Leask, R.; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen IngeniaritzaIn this study, the trapping ability of the Günther Tulip and Celect inferior vena cava filters was evaluated. Thrombus capture rates of the filters were tested in vitro in horizontal position with thrombus diameters of 3 and 6 mm and tube diameter of 19 mm. The filters were tested in centered and tilted positions. Sets of 30 clots were injected into the model and the same process was repeated 20 times for each different condition simulated. Pressure drop experienced along the system was also measured and the percentage of clots captured was recorded. The Günther Tulip filter showed superiority in all cases, trapping almost 100% of 6 mm clots both in an eccentric and tilted position and trapping 81.7% of the 3 mm clots in a centered position and 69.3% in a maximum tilted position. The efficiency of all filters tested decreased as the size of the embolus decreased and as the filter was tilted. The injection of 6 clots raised the pressure drop to 4.1 mmHg, which is a reasonable value that does not cause the obstruction of blood flow through the system.Publication Open Access Modeling the flow and mass transport in a mechanically stimulated parametric porous scaffold under fluid-structure interaction approach(Elsevier, 2018) Malvè, Mauro; Bergstrom, Donald; Chen, Xiongbiao; Ingeniería; IngeniaritzaTissue engineering scaffolds combined with bioreactors are used to cultivate cells with the aim of reproducing tissues and organs. The cultivating process is critical due to the delicate in-vitro environment in which the cells should reproduce. The distribu- tion of nutrients within the engineered construct depend on the scaffold morphology and the analysis of the fluid flow and transport phenomena under mechanical loading when the scaffold is coupled with a bioreactor is crucial for this scope. Unfortunately, due to the complicated microstructure of the scaffold, it is not possible to perform this analysis with experiments and numerical simulation can help in this sense. In this study we have computed the fluid flow and the mass transport of a parametrized scaffold in perfusion bioreactors analyzing the influence of the microstructure of the scaffold using the fluid-structure interaction approach. The latter allows considering the porous construct as compliant yet determining important structural parameters such as stresses and strains that could be sensed by the cells. The presented model considered flow perfusion that provided nutrients and mechanical compression. In particular, we have studied the effect of controllable parameters such as the diam- eter of the scaffold strand and the porosity on the mechanical stresses and strains, shear stress and mass transport. The results of this work will help to shed light on the necessary microenvironment surrounding the cultivated cells improving culturing scaffold fabrication.Publication Open Access Influence of a commercial antithrombotic filter on the caval blood flow during neutra and valsalva maneuver(ASME, 2017) Nicolás, M.; Lucea, B.; Laborda, A.; Peña, Estefanía; Malvè, Mauro; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen IngeniaritzaAnticoagulants are the treatment of choice for pulmonary embolism. When these fail or are contraindicated, vena cava filters are effective devices for preventing clots from the legs from migrating to the lung. Many uncertainties exist when a filter is inserted, especially during physiological activity such as normal breathing and the Valsalva maneuver. These activities are often connected with filter migration and vena cava damage due to the various related vein geometrical configurations. In this work, we analyzed the response of the vena cava during normal breathing and Valsalva maneuver, for a healthy vena cava and after insertion of a commercial Günther-Tulip® filter. Validated computational fluid dynamics (CFD) and patient specific data are used for analyzing blood flow inside the vena cava during these maneuvers. While during normal breathing, the vena cava flow can be considered almost stationary with a very low pressure gradient, during Valsalva the extravascular pressure compresses the vena cava resulting in a drastic reduction of the vein section, a global flow decrease through the cava but increasing the velocity magnitude. This change in the section is altered by the presence of the filter which forces the section of the vena cava before the renal veins to keep open. The effect of the presence of the filter is investigated during these maneuvers showing changes in wall shear stress and velocity patterns.
- «
- 1 (current)
- 2
- 3
- »