Santamaría Martínez, Enrique

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Santamaría Martínez

First Name

Enrique

person.page.departamento

Ciencias de la Salud

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 1 of 1
  • PublicationOpen Access
    Stabilization of 14-3-3 protein-protein interactions with Fusicoccin-A decreases alpha-synuclein dependent cell-autonomous death in neuronal and mouse models
    (Elsevier, 2023) Vinueza-Gavilanes, Rodrigo; Bravo-González, Jorge Juan; Basurco, Leyre; Boncristiani, Chiara; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Marcilla, Irene; Pérez Mediavilla, Alberto; Luquin, María Rosario; Vales, Africa; González-Aseguinolaza, Gloria; Aymerich, María Soledad; Aragón, Tomás; Arrasate, Montserrat; Ciencias de la Salud; Osasun Zientziak
    Synucleinopathies are a group of neurodegenerative diseases without effective treatment characterized by the abnormal aggregation of alpha-synuclein (aSyn) protein. Changes in levels or in the amino acid sequence of aSyn (by duplication/triplication of the aSyn gene or point mutations in the encoding region) cause familial cases of synucleinopathies. However, the specific molecular mechanisms of aSyn-dependent toxicity remain unclear. Increased aSyn protein levels or pathological mutations may favor abnormal protein-protein interactions (PPIs) that could either promote neuronal death or belong to a coping response program against neurotoxicity. Therefore, the identification and modulation of aSyn-dependent PPIs can provide new therapeutic targets for these diseases. To identify aSyn-dependent PPIs we performed a proximity biotinylation assay based on the promiscuous biotinylase BioID2. When expressed as a fusion protein, BioID2 biotinylates by proximity stable and transient interacting partners, allowing their identification by streptavidin affinity purification and mass spectrometry. The aSyn interactome was analyzed using BioID2-tagged wild-type (WT) and pathological mutant E46K aSyn versions in HEK293 cells. We found the 14-3-3 epsilon isoform as a common protein interactor for WT and E46K aSyn. 14‐3-3 epsilon correlates with aSyn protein levels in brain regions of a transgenic mouse model overexpressing WT human aSyn. Using a neuronal model in which aSyn cell-autonomous toxicity is quantitatively scored by longitudinal survival analysis, we found that stabilization of 14‐3-3 protein-proteins interactions with Fusicoccin-A (FC-A) decreases aSyn-dependent toxicity. Furthermore, FC-A treatment protects dopaminergic neuronal somas in the substantia nigra of a Parkinson's disease mouse model. Based on these results, we propose that the stabilization of 14‐3-3 epsilon interaction with aSyn might reduce aSyn toxicity, and highlight FC-A as a potential therapeutic compound for synucleinopathies.