Santamaría Martínez, Enrique

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Santamaría Martínez

First Name

Enrique

person.page.departamento

Ciencias de la Salud

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 67
  • PublicationOpen Access
    Amyotrophic lateral sclerosis is accompanied by protein derangements in the olfactory bulb-tract axis
    (MDPI, 2020) Lachén Montes, Mercedes; Mendizuri, Naroa; Ausín, Karina; Andrés Benito, Pol; Ferrer, Isidro; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua, Ref. 0011-1411-2020-000028
    Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by progressive muscle paralysis due to the degeneration of upper and lower motor neurons. Recent studies point out an involvement of the non-motor axis during disease progression. Despite smell impairment being considered a potential non-motor finding in ALS, the pathobiochemistry at the olfactory level remains unknown. Here, we applied an olfactory quantitative proteotyping approach to analyze the magnitude of the olfactory bulb (OB) proteostatic imbalance in ALS subjects (n = 12) with respect to controls (n = 8). Around 3% of the quantified OB proteome was differentially expressed, pinpointing aberrant protein expression involved in vesicle-mediated transport, macroautophagy, axon development and gliogenesis in ALS subjects. The overproduction of olfactory marker protein (OMP) points out an imbalance in the olfactory signal transduction in ALS. Accompanying the specific overexpression of glial fibrillary acidic protein (GFAP) and Bcl-xL in the olfactory tract (OT), a tangled disruption of signaling routes was evidenced across the OB–OT axis in ALS. In particular, the OB survival signaling dynamics clearly differ between ALS and frontotemporal lobar degeneration (FTLD), two faces of TDP-43 proteinopathy. To the best of our knowledge, this is the first report on high-throughput molecular characterization of the olfactory proteostasis in ALS.
  • PublicationOpen Access
    Deciphering CHFR role in pancreatic ductal adenocarcinoma
    (Frontiers Media, 2021) González Borja, Iranzu; Alors-Pérez, Emilia; Amat Villegas, Irene; Alonso, Laura; Viyuela-García, Cristina; Goñi Irigoyen, Saioa; Reyes, José C.; Ceballos-Chávez, María; Hernández García, Irene; Sánchez-Frías, Marina E.; Santamaría Martínez, Enrique; Razquin, Socorro; Arjona Sánchez, Álvaro; Arrazubi, Virginia; Pérez Sanz, Jairo; Vera García, Ruth; Fernández Irigoyen, Joaquín; Castaño, Justo P.; Viúdez, Antonio; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua
    Checkpoint with forkhead-associated and ring finger domains (CHFR) has been proposed as a predictive and prognosis biomarker for different tumor types, but its role in pancreatic ductal adenocarcinoma (PDAC) remains unknown. The aim of this study was two-pronged: to review the role of CHFR in PDAC and evaluating CHFR as a potential predictive biomarker in this disease. For this purpose, we first explored the CHFR messenger (m)RNA expression and promoter methylation through the TCGA database. Secondly, the CHFR expression and promoter methylation were prospectively evaluated in a cohort of patients diagnosed with borderline (n = 19) or resectable (n = 16) PDAC by immunohistochemistry (IHC), methylation specific-PCR (MSP), and pyrosequencing. The results from the TCGA database showed significant differences in terms of progression-free survival (PFS) and overall survival (OS) based on the CHFR mRNA expression, which was likely independent from the promoter methylation. Importantly, our results showed that in primarily resected patients and also the entire cohort, a higher CHFR expression as indicated by the higher IHC staining intensity might identify patients with longer disease-free survival (DFS) and OS, respectively. Similarly, in the same cohorts, patients with lower methylation levels by pyrosequencing showed significantly longer OS than patients without this pattern. Both, the CHFR expression intensity and its promoter methylation were established as independent prognostic factors for PFS and OS in the entire cohort. In contrast, no significant differences were found between different methylation patterns for CHFR and the response to taxane-based neoadjuvant treatment. These results suggest the potential role of the higher expression of CHFR and the methylation pattern of its promoter as potential prognostic biomarkers in PDAC, thus warranting further comprehensive studies to extend and confirm our preliminary findings.
  • PublicationOpen Access
    RTP801 interacts with the tRNA ligase complex and dysregulates its RNA ligase activity in Alzheimer's disease
    (Oxford University Press, 2024-09-12) Campoy-Campos, Genís; Solana-Balaguer, Júlia; Guisado-Corcoll, Anna; Chicote-González, Almudena; García-Segura, Pol; Pérez-Sisqués, Leticia; Gabriel Torres, Adrián; Canal, Mercè; Molina-Porcel, Laura; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Pouplana, Lluís Ribas de; Alberch, Jordi; Martí, Eulàlia; Giralt, Albert; Pérez-Navarro, Esther; Malagelada, Cristina; Ciencias de la Salud; Osasun Zientziak
    RTP801/REDD1 is a stress-responsive protein overexpressed in neurodegenerative diseases such as Alzheimer's disease (AD) that contributes to cognitive deficits and neuroinflammation. Here, we found that RTP801 interacts with HSPC117, DDX1 and CGI-99, three members of the tRNA ligase complex (tRNA-LC), which ligates the excised exons of intron-containing tRNAs and the mRNA exons of the transcription factor XBP1 during the unfolded protein response (UPR). We also found that RTP801 modulates the mRNA ligase activity of the complex in vitro since RTP801 knockdown promoted XBP1 splicing and the expression of its transcriptional target, SEC24D. Conversely, RTP801 overexpression inhibited the splicing of XBP1. Similarly, in human AD postmortem hippocampal samples, where RTP801 is upregulated, we found that XBP1 splicing was dramatically decreased. In the 5xFAD mouse model of AD, silencing RTP801 expression in hippocampal neurons promoted Xbp1 splicing and prevented the accumulation of intron-containing pre-tRNAs. Finally, the tRNA-enriched fraction obtained from 5xFAD mice promoted abnormal dendritic arborization in cultured hippocampal neurons, and RTP801 silencing in the source neurons prevented this phenotype. Altogether, these results show that elevated RTP801 impairs RNA processing in vitro and in vivo in the context of AD and suggest that RTP801 inhibition could be a promising therapeutic approach.
  • PublicationOpen Access
    Motor skill learning modulates striatal extracellular vesicles' content in a mouse model of Huntington's disease
    (BMC, 2024-06-11) Solana-Balaguer, Júlia; García-Segura, Pol; Campoy-Campos, Genís; Chicote-González, Almudena; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Pérez-Navarro, Esther; Masana, Mercè; Alberch, Jordi; Malagelada, Cristina; Ciencias de la Salud; Osasun Zientziak
    Huntington's disease (HD) is a neurological disorder caused by a CAG expansion in the Huntingtin gene (HTT). HD pathology mostly affects striatal medium-sized spiny neurons and results in an altered cortico-striatal function. Recent studies report that motor skill learning, and cortico-striatal stimulation attenuate the neuropathology in HD, resulting in an amelioration of some motor and cognitive functions. During physical training, extracellular vesicles (EVs) are released in many tissues, including the brain, as a potential means for inter-tissue communication. To investigate how motor skill learning, involving acute physical training, modulates EVs crosstalk between cells in the striatum, we trained wild-type (WT) and R6/1 mice, the latter with motor and cognitive deficits, on the accelerating rotarod test, and we isolated their striatal EVs. EVs from R6/1 mice presented alterations in the small exosome population when compared to WT. Proteomic analyses revealed that striatal R6/1 EVs recapitulated signaling and energy deficiencies present in HD. Motor skill learning in R6/1 mice restored the amount of EVs and their protein content in comparison to naïve R6/1 mice. Furthermore, motor skill learning modulated crucial pathways in metabolism and neurodegeneration. All these data provide new insights into the pathogenesis of HD and put striatal EVs in the spotlight to understand the signaling and metabolic alterations in neurodegenerative diseases. Moreover, our results suggest that motor learning is a crucial modulator of cell-to-cell communication in the striatum.
  • PublicationOpen Access
    Metschnikowia pulcherrima as an efficient biocontrol agent of Botrytis cinerea infection in apples: unraveling protection mechanisms through yeast proteomics
    (Elsevier, 2023) Fernández San Millán, Alicia; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Larraya Reta, Luis María; Farrán Blanch, Inmaculada; Veramendi Charola, Jon; Ciencias de la Salud; Osasun Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The results obtained in this study show that the Mp-30 strain of Metschnikowia pulcherrima is able to completely prevent Botrytis cinerea infection in apples, which is a major postharvest disease of fruits throughout the world. We have observed that although Mp-30 is able to rapidly colonize wounds, sequestrate iron and secrete antifungal compounds, other unknown mechanisms that occur in the early phase of the yeast-fungal interaction must be implicated in the biocontrol response. The main objective of this study was to identify the pathways involved in the mechanism of action of Mp-30 against B. cinerea in apples. Therefore, differentially accumulated yeast proteins in the presence/absence of B. cinerea on wounded apples were studied to elucidate Mp-30 biocontrol mechanisms and regulation at the protein level. A comparative proteomic analysis showed that 114 yeast proteins were increased and 61 were decreased. The Mp-30 antagonistic response mainly showed the increase of (1) gene expression and protein translation related proteins, (2) trafficking and vesicle-mediated transport related proteins, (3) pyruvate metabolism and mitochondrial proteins related to energy and amino acid production, (4) fatty acid synthesis, and (5) cell envelope related proteins. On the other hand, redox homeostasis, and amino acid and carbon metabolism were downregulated. Since there is no yeast growth enhancement associated with the presence of B. cinerea, such regulation mechanisms may be related to the reprogramming of metabolism, synthesis of new compounds and reorganization of yeast cell structure. Indeed, the results show that several pathways cooperate in restructuring the plasma membrane and cell wall composition, highlighting their major role in the antagonistic interactions for apple protection against gray mold proliferation. These results are of great interest since they provide a clear insight into the yeast mechanisms involved in B. cinerea inactivation during the first hours of contact in the wounded fruit. They shed light on the unknown yeast molecular biocontrol mechanisms.
  • PublicationOpen Access
    Signature-driven repurposing of Midostaurin for combination with MEK1/2 and KRASG12C inhibitors in lung cancer
    (Springer Nature, 2023) Macaya, Irati; Roman, Marta; Welch, Connor; Entrialgo-Cadierno, Rodrigo; Salmon, Marina; Santos, Alba; Feliu, Iker; Kovalski, Joanna; López Erdozain, Inés; Rodríguez-Remírez, María; Palomino Echeverría, Sara; Lonfgren, Shane M.; Ferrero, Macarena; Calabuig, Silvia; Ludwig, Iziar A.; Lara-Astiaso, David; Jantus-Lewintre, Eloisa; Guruceaga, Elizabeth; Narayanan, Shruthi; Ponz Sarvisé, Mariano; Pineda Lucena, Antonio; Lecanda, Fernando; Ruggero, Davide; Khatri, Purvesh; Santamaría Martínez, Enrique; Fernández Irigoyen, Joaquín; Ferrer, Irene; Paz-Ares, Luis; Drosten, Matthias; Barbacid, Mariano; Gil-Bazo, Ignacio; Vicent, Silvestre; Ciencias de la Salud; Osasun Zientziak
    Drug combinations are key to circumvent resistance mechanisms compromising response to single anti-cancer targeted therapies. The implementation of combinatorial approaches involving MEK1/2 or KRASG12C inhibitors in the context of KRAS-mutated lung cancers focuses fundamentally on targeting KRAS proximal activators or effectors. However, the antitumor effect is highly determined by compensatory mechanisms arising in defined cell types or tumor subgroups. A potential strategy to find drug combinations targeting a larger fraction of KRAS-mutated lung cancers may capitalize on the common, distal gene expression output elicited by oncogenic KRAS. By integrating a signature-driven drug repurposing approach with a pairwise pharmacological screen, here we show synergistic drug combinations consisting of multi-tyrosine kinase PKC inhibitors together with MEK1/2 or KRASG12C inhibitors. Such combinations elicit a cytotoxic response in both in vitro and in vivo models, which in part involves inhibition of the PKC inhibitor target AURKB. Proteome profiling links dysregulation of MYC expression to the effect of both PKC inhibitor-based drug combinations. Furthermore, MYC overexpression appears as a resistance mechanism to MEK1/2 and KRASG12C inhibitors. Our study provides a rational framework for selecting drugs entering combinatorial strategies and unveils MEK1/2- and KRASG12C-based therapies for lung cancer.
  • PublicationOpen Access
    Maraviroc prevents hcc development by suppressing macrophages and the liver progenitor cell response in a murine chronic liver disease model
    (MDPI, 2021) Passman, Adam M.; Strauss, Robyn P.; McSpadden, Sarah B.; Finch-Edmondson, Megan; Andrewartha, Neil; Woo, Ken H.; Diepeveen, Luke A.; Zhao, Weihao; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Medina-Ruiz, Laura; Szpakowska, Martyna; Chevigné, Andy; Park, Hyerin; Carlessi, Rodrigo; Tirnitz-Parker, Janina; Blanco, José R.; London, Roslyn; Callus, Bernard A.; Elsegood, Caryn L.; Baker, Murray V.; Martínez, Alfredo; Yeoh, George C.T.; Ochoa-Callejero, Laura; Ciencias de la Salud; Osasun Zientziak
    Maraviroc (MVC), a CCR5 antagonist, reduces liver fibrosis, injury and tumour burden in mice fed a hepatocarcinogenic diet, suggesting it has potential as a cancer therapeutic. We investigated the effect of MVC on liver progenitor cells (LPCs) and macrophages as both have a role in hepatocarcinogenesis. Mice were fed the hepatocarcinogenic choline-deficient, ethionine-supple-mented diet (CDE) ± MVC, and immunohistochemistry, RNA and protein expression were used to determine LPC and macrophage abundance, migration and related molecular mechanisms. MVC reduced LPC numbers in CDE mice by 54%, with a smaller reduction seen in macrophages. Tran-script and protein abundance of LPC-associated markers correlated with this reduction. The CDE diet activated phosphorylation of AKT and STAT3 and was inhibited by MVC. LPCs did not express Ccr5 in our model; in contrast, macrophages expressed high levels of this receptor, suggesting the effect of MVC is mediated by targeting macrophages. MVC reduced CD45+ cells and macrophage migration in liver and blocked the CDE-induced transition of liver macrophages from an M1-to M2-tumour-associated macrophage (TAM) phenotype. These findings suggest MVC has potential as a re-purposed therapeutic agent for treating chronic liver diseases where M2-TAM and LPC numbers are increased, and the incidence of HCC is enhanced.
  • PublicationOpen Access
    Familial globular glial tauopathy linked to MAPT mutations: molecular neuropathology and seeding capacity of a prototypical mixed neuronal and glial tauopathy
    (Springer, 2020) Ferrer, Isidro; Andrés Benito, Pol; Zelaya Huerta, María Victoria; Erro Aguirre, María Elena; Carmona, Margarita; Ausín, Karina; Lachén Montes, Mercedes; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Río, José Antonio del; Ciencias de la Salud; Osasun Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Globular glial tauopathy (GGT) is a progressive neurodegenerative disease involving the grey matter and white matter (WM) and characterized by neuronal deposition of hyper-phosphorylated, abnormally conformed, truncated, oligomeric 4Rtau in neurons and in glial cells forming typical globular astrocyte and oligodendrocyte inclusions (GAIs and GOIs, respectively) and coiled bodies. Present studies centre on four genetic GGT cases from two unrelated families bearing the P301T mutation in MAPT and one case of sporadic GGT (sGGT) and one case of GGT linked to MAPT K317M mutation, for comparative purposes. Clinical and neuropathological manifestations and biochemical profiles of phospho-tau are subjected to individual variations in patients carrying the same mutation, even in carriers of the same family, independently of the age of onset, gender, and duration of the disease. Immunohistochemistry, western blotting, transcriptomic, proteomics and phosphoproteomics, and intra-cerebral inoculation of brain homogenates to wild-type (WT) mice were the methods employed. In GGT cases linked to MAPT P301T mutation, astrocyte markers GFAP, ALDH1L1, YKL40 mRNA and protein, GJA1 mRNA, and AQ4 protein are significantly increased; glutamate transporter GLT1 (EAAT2) and glucose transporter (SLC2A1) decreased; mitochondrial pyruvate carrier 1 (MPC1) increased, and mitochondrial uncoupling protein 5 (UCP5) almost absent in GAIs in frontal cortex (FC). Expression of oligodendrocyte markers OLIG1 and OLIG2mRNA, and myelin-related genes MBP, PLP1, CNP, MAG, MAL, MOG, and MOBP are significantly decreased in WM; CNPase, PLP1, and MBP antibodies reveal reduction and disruption of myelinated fibres; and SMI31 antibodies mark axonal damage in the WM. Altered expression of AQ4, GLUC-t, and GLT-1 is also observed in sGGT and in GGT linked to MAPT K317M mutation. These alterations point to primary astrogliopathy and oligodendrogliopathy in GGT. In addition, GGT linked to MAPT P301T mutation proteotypes unveil a proteostatic imbalance due to widespread (phospho)proteomic dearrangement in the FC and WM, triggering a disruption of neuron projection morphogenesis and synaptic transmission. Identification of hyper-phosphorylation of variegated proteins calls into question the concept of phospho-tau-only alteration in the pathogenesis of GGT. Finally, unilateral inoculation of sarkosyl-insoluble fractions of GGT homogenates from GGT linked to MAPT P301T, sGGT, and GGT linked to MAPT K317M mutation in the hippocampus, corpus callosum, or caudate/putamen in wild-type mice produces seeding, and time- and region-dependent spreading of phosphorylated, non-oligomeric, and non-truncated 4Rtau and 3Rtau, without GAIs and GOIs but only of coiled bodies. These experiments prove that host tau strains are important in the modulation of cellular vulnerability and phenotypes of phospho-tau aggregates.
  • PublicationOpen Access
    Towards precision prognostication and personalized therapeutics through proteomics
    (MDPI, 2023) Santamaría Martínez, Enrique; Ciencias de la Salud; Osasun Zientziak
    Next-generation proteomics has allowed the implementation of biomedical proteome research to uncover disease-affected protein expression profiles. It has also enabled the determination of protein localization, protein interactomes, posttranslational modifications and protein dysfunction in human diseases. Many pillars in personalized medicine, such as diagnostic improvements, drug screening, systems biology or bioinformatics, require the generation of quantitatively consistent proteomics data from translational animal models to human biospecimens to fill the information gap, making omics analysis actionable from a clinical perspective [1-3]. This Special Issue received multiple submissions, of which five original articles were accepted for publication. These contributions cover different phases of precision medicine in the context of proteomics: (i) discovery and quantitation of potential biomarker candidates (three articles), (ii) the proteostatic modulation and mechanisms of action of pharmacological compounds (one article) and (iii) the characterization of posttranslational modifications (one article).
  • PublicationOpen Access
    Alterations of the IKZF1-IKZF2 tandem in immune cells of schizophrenia patients regulate associated phenotypes
    (BMC, 2024-12-18) Ballasch, Iván; López-Molina, Laura; Galán-Ganga, Marcos; Sancho-Balsells, Anna; Rodríguez-Navarro, Irene; Borràs-Pernas, Sara; Rabadán, M. Ángeles; Chen, Wanqi; Pastó-Pellicer, Carlota; Flotta, Francesca; Maoyu, Wang; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Aguilar, Ruth; Dobaño, Carlota; Egri, Natalia; Hernández, Carla; Alfonso, Miqueu; Juan, Manel; Alberch, Jordi; Toro, Daniel del; Arranz, Belén; Canals, Josep M.; Giralt, Albert; Ciencias de la Salud; Osasun Zientziak
    Schizophrenia is a complex multifactorial disorder and increasing evidence suggests the involvement of immune dysregulations in its pathogenesis. We observed that IKZF1 and IKZF2, classic immune-related transcription factors (TFs), were both downregulated in patients' peripheral blood mononuclear cells (PBMCs) but not in their brain. We generated a new mutant mouse model with a reduction in Ikzf1 and Ikzf2 to study the impact of those changes. Such mice developed deficits in the three dimensions (positive-negative-cognitive) of schizophrenia-like phenotypes associated with alterations in structural synaptic plasticity. We then studied the secretomes of cultured PBMCs obtained from patients and identified potentially secreted molecules, which depended on IKZF1 and IKZF2 mRNA levels, and that in turn have an impact on neural synchrony, structural synaptic plasticity and schizophrenia-like symptoms in in vivo and in vitro models. Our results point out that IKZF1-IKZF2-dependent immune signals negatively impact on essential neural circuits involved in schizophrenia.