Santamaría Martínez, Enrique

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Santamaría Martínez

First Name

Enrique

person.page.departamento

Ciencias de la Salud

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 63
  • PublicationOpen Access
    Effectiveness of a multicomponent exercise training program for the management of delirium in hospitalized older adults using near-infrared spectroscopy as a biomarker of brain perfusion: study protocol for a randomized controlled trial
    (Frontiers Media, 2022) Lozano Vicario, Lucía; Zambom Ferraresi, Fabíola; Zambom Ferraresi, Fabrício; Casa Marín, Antón de la; Ollo Martínez, Iranzu; López Sáez de Asteasu, Mikel; Cedeño Veloz, Bernardo Abel; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Romero Ortuno, Román; Izquierdo Redín, Mikel; Martínez Velilla, Nicolás; Ciencias de la Salud; Osasun Zientziak
    Delirium is an important cause of morbidity and mortality in older adults admitted to hospital. Multicomponent interventions targeting delirium risk factors, including physical exercise and mobilization, have been shown to reduce delirium incidence by 30–40% in acute care settings. However, little is known about its role in the evolution of delirium, once established. This study is a randomized clinical trial conducted in the Acute Geriatric Unit of Hospital Universitario de Navarra (Pamplona, Spain). Hospitalized patients with delirium who meet the inclusion criteria will be randomly assigned to the intervention or the control group. The intervention will consist of a multicomponent exercise training program, which will be composed of supervised progressive resistance and strength exercise over 3 consecutive days. Functional Near-Infrared Spectroscopy (NIRS) will be used for assessing cerebral and muscle tissue blood flow. The objective is to assess the effectiveness of this intervention in modifying the following primary outcomes: duration and severity of delirium and functional status. This study will contribute to determine the effectiveness of physical exercise in the management of delirium. It will be the first study to evaluate the impact of a multicomponent intervention based on physical exercise in the evolution of delirium.
  • PublicationOpen Access
    The proteome of Medicago truncatula in response to ammonium and urea nutrition reveals the role of membrane proteins and enzymes of root lignification
    (Elsevier, 2019) Royo Castillejo, Beatriz; Esteban Terradillos, Raquel; Buezo Bravo, Javier; Santamaría Martínez, Enrique; Fernández Irigoyen, Joaquín; Becker, Dirk; Morán Juez, José Fernando; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Plants differ widely in their growth and tolerance responses to ammonium and urea nutrition, while derived phenotypes seem markedly different from plants grown under nitrate supply. Plant responses to N sources are complex, and the traits involved remain unknown. This work reports a comprehensive and quantitative root proteomic study on the NH4+-tolerant legume Medicago truncatula grown under axenic conditions with either nitrate, NH4+ or urea supply as sole N source by using the iTRAQ method. Sixty-one different proteins among the three N sources were identified. Interestingly, among the proteomic responses, urea nutrition displayed greater similarity to nitrate than to ammonium nutrition. We found remarkable differences in membrane proteins that play roles in sensing the N form, and regulate the intracellular pH and the uptake of N. Also, several groups of proteins were differentially expressed in the C metabolism pathway involved in reorganizing N assimilation. In addition, enzymes related to phenylpropanoid metabolism, including the peroxidases POD2, POD6, POD7 and POD11, which were up-regulated under ammonium nutrition, contributed to the reinforcement of cell walls, as confirmed by specific staining of lignin. Thus, we identified cell wall lignification as an important tolerance mechanism of root cells associated with the stunted phenotype typical of plants grown under ammonium nutrition.
  • PublicationOpen Access
    Astrocytic GLUT1 reduction paradoxically improves central and peripheral glucose homeostasis
    (American Association for the Advancement of Science, 2024-10-18) Ardanaz, Carlos G.; Cruz, Aida de la; Minhas, Paras S.; Hernández-Martín, Nira; Pozo, Miguel Ángel ; Valdecantos, M. Pilar; Martínez Valverde, Ángela; Villa-Valverde, Palmira; Elizalde-Horcada, Marcos; Puerta, Elena; Ramírez, María J.; Ortega, Jorge E.; Urbiola, Ainhoa; Ederra, Cristina; Ariz Galilea, Mikel; Ortiz de Solórzano, Carlos; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Karsenty, Gerard; Brüning, Jens C. ; Solas, Maite; Ciencias de la Salud; Osasun Zientziak; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza
    Astrocytes are considered an essential source of blood-borne glucose or its metabolites to neurons. Nonetheless, the necessity of the main astrocyte glucose transporter, i.e., GLUT1, for brain glucose metabolism has not been defined. Unexpectedly, we found that brain glucose metabolism was paradoxically augmented in mice with astrocytic GLUT1 reduction (GLUT1ΔGFAP mice). These mice also exhibited improved peripheral glucose metabolism especially in obesity, rendering them metabolically healthier. Mechanistically, we observed that GLUT1-deficient astrocytes exhibited increased insulin receptor–dependent ATP release, and that both astrocyte insulin signaling and brain purinergic signaling are essential for improved brain function and systemic glucose metabolism. Collectively, we demonstrate that astrocytic GLUT1 is central to the regulation of brain energetics, yet its depletion triggers a reprogramming of brain metabolism sufficient to sustain energy requirements, peripheral glucose homeostasis, and cognitive function.
  • PublicationOpen Access
    Network-driven proteogenomics unveils an aging-related imbalance in the olfactory IκBα-NFκB p65 complex functionality in Tg2576 Alzheimer’s disease mouse model
    (MDPI, 2017) Palomino Alonso, Maialen; Lachén Montes, Mercedes; González Morales, Andrea; Ausín, Karina; Pérez Mediavilla, Alberto; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua, PC023-24; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Olfaction is often deregulated in Alzheimer’s disease (AD) patients, and is also impaired in transgenic Tg2576 AD mice, which overexpress the Swedish mutated form of human amyloid precursor protein (APP). However, little is known about the molecular mechanisms that accompany the neurodegeneration of olfactory structures in aged Tg2576 mice. For that, we have applied proteome- and transcriptome-wide approaches to probe molecular disturbances in the olfactory bulb (OB) dissected from aged Tg2576 mice (18 months of age) as compared to those of age matched wild-type (WT) littermates. Some over-represented biological functions were directly relevant to neuronal homeostasis and processes of learning, cognition, and behavior. In addition to the modulation of CAMP responsive element binding protein 1 (CREB1) and APP interactomes, an imbalance in the functionality of the IκBα-NFκB p65 complex was observed during the aging process in the OB of Tg2576 mice. At two months of age, the phosphorylated isoforms of olfactory IκBα and NFκB p65 were inversely regulated in transgenic mice. However, both phosphorylated proteins were increased at 6 months of age, while a specific drop in IκBα levels was detected in 18-month-old Tg2576 mice, suggesting a transient activation of NFκB in the OB of Tg2576 mice. Taken together, our data provide a metabolic map of olfactory alterations in aged Tg2576 mice, reflecting the progressive effect of APP overproduction and β-amyloid (Aβ) accumulation on the OB homeostasis in aged stages.
  • PublicationOpen Access
    Proteomics and recurrence of atrial fibrillation: a pilot study nested in the PREDIMAR trial
    (Karger, 2025-01-24) Razquin, Cristina; Fernández Irigoyen, Joaquín; Barrio-López, María Teresa; López, Begoña ; Ravassa, Susana; Ramos, Pablo; Macías-Ruiz, Rosa; Ibáñez Criado, Alicia; Santamaría Martínez, Enrique; Goñi, Leticia; Castellanos, Eduardo; Ibáñez Criado, José Luis; Tercedor, Luis ; García-Bolao, Ignacio; Martínez González, Miguel Ángel; Almendral, Jesús; Ruiz Canela, Miguel; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua
    Introduction: Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia worldwide. Although catheter ablation is the most efficacious therapy, relapses occur frequently (30%) in the first year after ablation. Novel biomarkers of recurrence are needed for a better prediction of recurrence and management of AF. In this pilot study, we aimed to analyze the baseline proteome of subjects included in a case-control study to find differential proteins associated with AF recurrence. Methods: Baseline serum proteomics (354 proteins) data from 16 cases (recurrent AF) and 17 controls (non-recurrent) were obtained using MS/MS analysis. A false discovery rate was performed using a nonlinear fitting method for the selection of proteins. Logistic regression models were used to further analyze the association between differentially expressed proteins and AF recurrence. Results: Ten proteins were differentially represented in cases vs. controls. Two were upregulated in the cases compared to the controls: keratin type I cytoskeletal 17 (Fold-change [FC] = 2.14; p = 0.017) and endoplasmic bifunctional protein (FC = 1.65; p = 0.032). Eight were downregulated in the cases compared to the controls: C4bpA (FC = 0.64; p = 0.006), coagulation factor XI (FC = 0.83; p = 0.011), CLIC1 (FC = 0.62; p = 0.017), haptoglobin (FC = 0.37; p = 0.021), Ig alpha-2 chain C region (FC = 0.49; p = 0.022), C4bpB (FC = 0.73; p = 0.028), N-acetylglucosamine-1- phosphotransferase subunit gamma (FC = 0.61; p = 0.033), and platelet glycoprotein Ib alpha chain (FC = 0.84; p = 0.038). Conclusion: This pilot study identifies ten differentially expressed serum proteins associated with AF recurrence, offering potential biomarkers for improved prediction and management.
  • PublicationOpen Access
    Improvement of cognitive function in wild-type and Alzheimer's disease mouse models by the immunomodulatory properties of menthol inhalation or by depletion of T regulatory cells
    (Frontiers Media, 2023) Casares, Noelia; Alfaro Larraya, María; Cuadrado-Tejedor, Mar; Lasarte-Cía, Aritz; Navarro Negredo, Flor; Vivas, Isabel; Espelosín, María; Cartas Cejudo, Paz; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; García-Osta, Ana; Lasarte, Juan José; Ciencias de la Salud; Osasun Zientziak
    A complex network of interactions exists between the olfactory, immune and central nervous systems. In this work we intend to investigate this connection through the use of an immunostimulatory odorant like menthol, analyzing its impact on the immune system and the cognitive capacity in healthy and Alzheimer’s Disease Mouse Models. We first found that repeated short exposures to menthol odor enhanced the immune response against ovalbumin immunization. Menthol inhalation also improved the cognitive capacity of immunocompetent mice but not in immunodeficient NSG mice, which exhibited very poor fear-conditioning. This improvement was associated with a downregulation of IL-1β and IL-6 mRNA in the brain´s prefrontal cortex, and it was impaired by anosmia induction with methimazole. Exposure to menthol for 6 months (1 week per month) prevented the cognitive impairment observed in the APP/PS1 mouse model of Alzheimer. Besides, this improvement was also observed by the depletion or inhibition of T regulatory cells. Treg depletion also improved the cognitive capacity of the APPNL-G-F/NL-G-F Alzheimer´s mouse model. In all cases, the improvement in learning capacity was associated with a downregulation of IL-1β mRNA. Blockade of the IL-1 receptor with anakinra resulted in a significant increase in cognitive capacity in healthy mice as well as in the APP/PS1 model of Alzheimer´s disease. These data suggest an association between the immunomodulatory capacity of smells and their impact on the cognitive functions of the animals, highlighting the potential of odors and immune modulators as therapeutic agents for CNS-related diseases.
  • PublicationOpen Access
    New in vivo approach to broaden the thioredoxin family interactome in chloroplasts
    (MDPI, 2022) Ancín Rípodas, María; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Larraya Reta, Luis María; Fernández San Millán, Alicia; Veramendi Charola, Jon; Farrán Blanch, Inmaculada; Ciencias de la Salud; Osasun Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Post-translational redox modifications provide an important mechanism for the control of major cellular processes. Thioredoxins (Trxs), which are key actors in this regulatory mechanism, are ubiquitous proteins that catalyse thiol-disulfide exchange reactions. In chloroplasts, Trx f, Trx m and NADPH-dependent Trx reductase C (NTRC) have been identified as transmitters of the redox signal by transferring electrons to downstream target enzymes. The number of characterised Trx targets has greatly increased in the last few years, but most of them were determined using in vitro procedures lacking isoform specificity. With this background, we have developed a new in vivo approach based on the overexpression of His-tagged single-cysteine mutants of Trx f, Trx m or NTRC into Nicotiana benthamiana plants. The over-expressed mutated Trxs, capable of forming a stable mixed disulfide bond with target proteins in plants, were immobilised on affinity columns packed with Ni-NTA agarose, and the covalently linked targets were eluted with dithiothreitol and identified by mass spectrometry-based proteomics. The in vivo approach allowed identification of 6, 9 and 42 new potential targets for Trx f, Trx m and NTRC, respectively, and an apparent specificity between NTRC and Trxs was achieved. Functional analysis showed that these targets are involved in several cellular processes.
  • PublicationOpen Access
    Multi-laboratory experiment PME11 for the standardization of phosphoproteome analysis
    (Elsevier, 2022) Colomé, Núria; Abian, Joaquín; Aloria, Kerman; Arizmendi, Jesús M.; Barceló-Batllori, Silvia; Braga-Lagache, Sophie; Burlet-Schiltz, Odile; Carrascal, Montse; Casal, Ignacio J.; Chicano-Gálvez, Eduard; Chiva, Cristina; Clemente, Luis F.; Elortza, Félix; Estanyol, Josep M.; Fernández Irigoyen, Joaquín; Fernández-Puente, Patricia; Fidalgo, María J.; Froment, Carine; Fuentes, Manuel; Fuentes-Almagro, Carlos; Gay, Marina; Hainard, Alexandre; Heller, Manfred; Hernández, María Luisa; Ibarrola, Nieves; Iloro, Ibon; Kieselbach, Thomas; Lario, Antonio; Locard-Paulet, Marie; Marina-Ramírez, Anabel; Martín, Luna; Morato-López, Esperanza; Muñoz, Javier; Navajas, Rosana; Odena, Antonia M.; Odriozola, Leticia; Oliveira, Eliandre de; Paradela, Alberto; Pasquarello, Carla; Rios, Vivian de los; Ruiz-Romero, Cristina; Sabidó, Eduard; Sánchez del Pino, Manuel; Sancho, Jaime; Santamaría Martínez, Enrique; Schaeffer-Reiss, Christine; Schneider, Justine; Torre, Carolina de la; Valero, Luz M.; Vilaseca, Marta; Wu, Shuai; Wu, Linfeng; Ximénez de Embún, Pilar; Canals, Francesc; Corrales, Fernando J.; ProteoRed-ISCIII; EuPA; Ciencias de la Salud; Osasun Zientziak
    Global analysis of protein phosphorylation by mass spectrometry proteomic techniques has emerged in the last decades as a powerful tool in biological and biomedical research. However, there are several factors that make the global study of the phosphoproteome more challenging than measuring non-modified proteins. The low stoichiometry of the phosphorylated species and the need to retrieve residue specific information require particular attention on sample preparation, data acquisition and processing to ensure reproducibility, qualitative and quantitative robustness and ample phosphoproteome coverage in phosphoproteomic workflows. Aiming to investigate the effect of different variables in the performance of proteome wide phosphoprotein analysis protocols, ProteoRed-ISCIII and EuPA launched the Proteomics Multicentric Experiment 11 (PME11). A reference sample consisting of a yeast protein extract spiked in with different amounts of a phosphomix standard (Sigma/Merck) was distributed to 31 laboratories around the globe. Thirty-six datasets from 23 laboratories were analyzed. Our results indicate the suitability of the PME11 reference sample to benchmark and optimize phosphoproteomics strategies, weighing the influence of different factors, as well as to rank intra and inter laboratory performance.
  • PublicationOpen Access
    Olfactory bulb proteomics reveals widespread proteostatic disturbances in mixed dementia and guides for potential serum biomarkers to discriminate alzheimer disease and mixed dementia phenotypes
    (MDPI, 2021) Lachén Montes, Mercedes; Íñigo-Marco, Ignacio; Cartas Cejudo, Paz; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua
    The most common form of mixed dementia (MixD) is constituted by abnormal protein deposits associated with Alzheimer's disease (AD) that coexist with vascular disease. Although olfactory dysfunction is considered a clinical sign of AD-related dementias, little is known about the impact of this sensorial impairment in MixD at the molecular level. To address this gap in knowledge, we assessed olfactory bulb (OB) proteome-wide expression in MixD subjects (n = 6) respect to neurologically intact controls (n = 7). Around 9% of the quantified proteins were differentially expressed, pinpointing aberrant proteostasis involved in synaptic transmission, nucleoside monophosphate and carbohydrate metabolism, and neuron projection regeneration. In addition, network-driven proteomics revealed a modulation in cell-survival related pathways such as ERK, AKT, and the PDK1-PKC axis. Part of the differential OB protein set was not specific of MixD, also being deregulated across different tauopathies, synucleinopathies, and tardopathies. However, the comparative functional analysis of OB proteome data between MixD and pure AD pathologies deciphered commonalities and differences between both related phenotypes. Finally, olfactory pro-teomics allowed to propose serum Prolow-density lipoprotein receptor-related protein 1 (LRP1) as a candidate marker to differentiate AD from MixD phenotypes.
  • PublicationOpen Access
    In-depth mass-spectrometry reveals phospho-RAB12 as a blood biomarker of G2019S LRRK2-driven Parkinson's disease
    (Oxford University Press, 2024-12-20) Cortés, Adriana; Phung, Toan K.; Mena, Lorena de ; Garrido, Alicia; Infante, Jon; Ruíz-Martínez, Javier; Galmés-Ordinas, Miquel À.; Glendinning, Sophie; Pérez, Jesica ; Roig, Ana ; Soto, Marta; Cosgaya, Marina; Ravasi, Valeria; Fernández, Manel; Rubiano-Castro, Alejandro ; Díaz, Ramón; Hernández-Eguiazu, Haizea ; Sánchez-Quintana, Coro; Vinagre-Aragón, Ana; Mondragón, Elisabet; Croitoru, Ioana; Rivera-Sánchez, María ; Corrales-Pardo, Andrea; Sierra, María; Tolosa, Eduardo; Malagelada, Cristina; Nirujogi, Raja S.; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Alessi, Dario R.; Martí, María J.; Ezquerra, Mario; Fernández-Santiago, Rubén; Ciencias de la Salud; Osasun Zientziak
    Leucine-rich repeat kinase 2 (LRRK2) inhibition is a promising disease-modifying therapy for LRRK2-associated Parkinson's disease (L2PD) and idiopathic PD. However, pharmacodynamic readouts and progression biomarkers for clinical trials aiming for disease modification are insufficient, given that no endogenous marker reflecting enhanced kinase activity of the most common LRRK2 G2019S mutation has yet been reported in L2PD patients.Using phospho-/proteomic analyses, we assessed the impact of LRRK2-activating mutations in peripheral blood mononuclear cells from an LRRK2 clinical cohort from Spain (n = 174). The study groups encompassed G2019S L2PD patients (n = 37), non-manifesting LRRK2 mutation carriers of G2019S (here termed G2019S L2NMCs) (n = 27), R1441G L2PD patients (n = 14), R1441G L2NMCs (n = 11), idiopathic PD patients (n = 40) and healthy controls (n = 45).We identified 207 differentially regulated proteins in G2019S L2PD compared with controls (39 upregulated and 168 downregulated) and 67 in G2019S L2NMCs (10 upregulated and 57 downregulated). G2019S downregulated proteins affected the endolysosomal pathway, proteostasis and mitochondria, e.g. ATIC, RAB9A or LAMP1. At the phospho-proteome level, we observed increases in endogenous phosphorylation levels of pSer106 RAB12 in G2019S carriers, which were validated by immunoblotting after 1 year of follow-up (n = 48). Freshly collected peripheral blood mononuclear cells from three G2019S L2PD, one R1441G L2PD, one idiopathic PD and five controls (n = 10) showed strong diminishment of pSer106 RAB12 phosphorylation levels after in vitro administration of the MLi-2 LRRK2 inhibitor. Using machine learning, we identified an 18-feature G2019S phospho-/protein signature discriminating G2019S L2PD, L2NMCs and controls with 96% accuracy that was correlated with disease severity, i.e. UPDRS-III motor scoring.Using easily accessible peripheral blood mononuclear cells from a LRRK2 clinical cohort, we identified elevated levels of pSer106 RAB12 as an endogenous biomarker of G2019S carriers. Our data suggest that monitoring pSer106 RAB12 phosphorylation could be a relevant biomarker for tracking LRRK2 activation, particularly in G2019S carriers. Future work might determine whether pSer106 RAB12 could help with patient enrichment and monitoring drug efficacy in LRRK2 clinical trials. The LRRK2 activating mutation G2019S is the most frequent genetic cause of Parkinson's disease. Through phospho-proteome analysis of blood, Cort & eacute;s et al. identify elevated phospho-RAB12 levels as an endogenous biomarker of G2019S mutation carriers, with potential utility in clinical trials.