UrsĂșa Rubio, Alfredo

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

UrsĂșa Rubio

First Name

Alfredo

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 74
  • PublicationOpen Access
    Integrated lithium-ion battery model and experimental validation of a second-life prototype
    (IEEE, 2023-08-31) PĂ©rez Ibarrola, Ane; San MartĂ­n Biurrun, Idoia; Sanchis GĂșrpide, Pablo; UrsĂșa Rubio, Alfredo; IngenierĂ­a ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako Gobernua
    A battery model predicts the battery performance, which can be a useful tool for optimizing battery design and preventing unsafe operation. This becomes especially significant in second-life batteries where the cells have already endured degradation and predicting the lifetime becomes challenging. The assessment of physical phenomena is often performed individually, but the overall battery behavior depends on their interaction. For this purpose, an integrated battery model is developed. Equivalent electric circuits are interconnected to represent the electrochemical reactions, thermodynamic phenomena, and heat transfer mechanisms of the battery. To consider cell degradation, calendar and cycling aging were represented using a semi-empirical model. A battery management system is included to oversee and remain within the safe limits of battery voltage, temperature, and current. Additionally, a passive cell balancing distributes charge evenly. The integrated model is applied to a second-life battery prototype with a nominal capacity and power of 45 Ah and 4 kW, respectively. Its performance is validated with constant current and power cycles, as well as in a microgrid with photovoltaic generation under a self-consumption profile. The model accurately reproduces experimental results of battery power, voltage, temperature, and state of charge.
  • PublicationOpen Access
    Methodology for comparative assessment of battery technologies: experimental design, modeling, performance indicators and validation with four technologies
    (Elsevier, 2025-01-15) Irujo Izcue, Elisa; Berrueta Irigoyen, Alberto; Sanchis GĂșrpide, Pablo; UrsĂșa Rubio, Alfredo; IngenierĂ­a ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad PĂșblica de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA2023-11380; Gobierno de Navarra / Nafarroako Gobernua
    An increasing number of applications with diverse requirements incorporate various battery technologies. Selecting the most suitable battery technology becomes a tedious task as several aspects need to be taken into account. Two of the key aspects are the battery characteristics under temperature variations and their degradation. While numerous contributions using tailored assessment methods to evaluate both aspects for a particular application exist in the literature, a general methodology for analysis is necessary to enable a quantitative comparison between different technologies. We propose in this paper a novel methodology, based on performance indicators, to quantify the potential and limitations of a battery technology for diverse applications sharing a similar operational profile. A quantification of phenomena such as the influence of high and low temperatures on the battery, or the effect of cycling and state of charge on battery aging is obtained. In pursuit of these indicators, an experimental procedure and the fitting of aging model parameters that allow their calculation are proposed. As an additional outcome of this work, a general aging model that allows comprehensive analysis of aging behavior is developed and the trade-off between experimental time and accuracy is analyzed to find an optimal experimental time between 2 and 4 months, depending on the studied battery technology. Finally, the proposed methodology is applied to four battery technologies in order to show its potential in a real case-study.
  • PublicationOpen Access
    Lithium-ion second-life batteries: aging modeling and experimental validation
    (IEEE, 2024-08-30) PĂ©rez Ibarrola, Ane; San MartĂ­n Biurrun, Idoia; Sanchis GĂșrpide, Pablo; UrsĂșa Rubio, Alfredo; IngenierĂ­a ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad PĂșblica de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA2023-11380; Gobierno de Navarra / Nafarroako Gobernua
    Re-utilizing lithium-ion batteries from electric vehicles reduces their environmental impact. To ensure their optimal sizing and safe use, identifying the current state of the battery and predicting its remaining useful life is essential. This work analyzes the degradation mechanisms involved and proposes an aging model that utilizes a semi-empirical approach to accurately reproduce the battery's state of health within a range of 75-45 %. Calendar aging includes dependencies on temperature and state of charge while cycling aging is modeled based on depth of discharge, medium SOC, temperature, and Crate. The model is validated against experimental data from 14 LMO/LNO cells previously used in actual Nissan Leaf vehicles and an RMSE bellow 2.5 % is achieved in every case.
  • PublicationOpen Access
    Temperature indicators and overtemperature detection in lithium-ion batteries based on electrochemical impedance spectroscopy
    (IEEE, 2023) Lalinde Sainz, Iñaki; Berrueta Irigoyen, Alberto; Soto Cabria, AdriĂĄn; Arza, Joseba; Sanchis GĂșrpide, Pablo; UrsĂșa Rubio, Alfredo; IngenierĂ­a ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Lithium-ion batteries are the leading technology for energy storage systems due to their attractive advantages. However, the safety of lithium-ion batteries is a major concern, as their operating conditions are limited in terms of temperature, voltage and state of charge. Therefore, it is important to monitor the conditions of lithium-ion batteries to guarantee safe operation. To this end, in the present work, we analyze electrochemical impedance spectroscopy (EIS) as a tool to estimate the temperature of batteries. Overtemperature abuse tests from 25 °C to 140 °C are performed at various states of charge, and EIS measurements are obtained during the tests. The influence of temperature on cell impedance at different frequencies is analyzed and new findings are revealed. The real part of the impedance is identified to be the best indicator for cell temperature estimation by EIS. In addition, the best frequency to achieve accurate temperature monitoring, avoiding disturbances produced by state of charge variations, is proposed based on experimental results. Finally, EIS is proven to be a reliable technique for overtemperature and thermal runaway detection.
  • PublicationOpen Access
    Winding resistance measurement in power inductors - understanding the impact of the winding mutual resistance
    (IEEE, 2021) Barrios RĂ­podas, Ernesto; Elizondo MartĂ­nez, David; UrsĂșa Rubio, Alfredo; Sanchis GĂșrpide, Pablo; IngenierĂ­a ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Inductors are cornerstone components in power electronics converters. Since winding loss is the dominant loss mechanism in these components, its accurate measurement is fundamental for the validation of the inductor's operation and design. The techniques for the winding resistance R_{w} measurement in power inductors can be classified into two groups, indirect and direct. Both techniques use coupled inductors to separate winding and core power losses. If coupled inductors with non-zero winding mutual resistances R_{w,m} are used, invalid results are obtained with these techniques. Understanding the meaning of R_{w,m} in coupled inductors is complex. In this paper, the impact of R_{w,m} on the inductor R_{w} measurement techniques is demonstrated and practical guidelines for the design of the zero R_{w,m} coupled inductors are given. Particularly, the location of the auxiliary winding for the direct technique is investigated. In order to compare the R_{w} measurement techniques and to validate the coupled inductor's R_{w,m} impact, two different inductors are built and tested. The results are compared with the values for R_{w} calculated by FEA simulation. It is found that only the direct technique with an auxiliary winding carefully designed and located following the guidelines given in this paper makes the accurate measurement of R_{w} in power inductors possible.
  • PublicationOpen Access
    Modelling of PEM fuel cell performance: steady-state and dynamic experimental validation
    (MDPI, 2014) San MartĂ­n Biurrun, Idoia; UrsĂșa Rubio, Alfredo; Sanchis GĂșrpide, Pablo; IngenierĂ­a ElĂ©ctrica y ElectrĂłnica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    This paper reports on the modelling of a commercial 1.2 kW proton exchange membrane fuel cell (PEMFC), based on interrelated electrical and thermal models. The electrical model proposed is based on the integration of the thermodynamic and electrochemical phenomena taking place in the FC whilst the thermal model is established from the FC thermal energy balance. The combination of both models makes it possible to predict the FC voltage, based on the current demanded and the ambient temperature. Furthermore, an experimental characterization is conducted and the parameters for the models associated with the FC electrical and thermal performance are obtained. The models are implemented in Matlab Simulink and validated in a number of operating environments, for steady-state and dynamic modes alike. In turn, the FC models are validated in an actual microgrid operating environment, through the series connection of 4 PEMFC. The simulations of the models precisely and accurately reproduce the FC electrical and thermal performance.
  • PublicationOpen Access
    Integration of second-life batteries in residential microgrids and fast charging stations
    (IEEE, 2022) San MartĂ­n Biurrun, Idoia; Braco Sola, Elisa; MartĂ­n Castilla, Álvaro; Sanchis GĂșrpide, Pablo; UrsĂșa Rubio, Alfredo; IngenierĂ­a ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Gobierno de Navarra / Nafarroako Gobernua
    The potential of batteries from electric vehicles to be given a second life in stationary applications could be starting to become a reality in few years. However, the technical and economic feasibility of such second-life batteries (SLBs) is still uncertain. In this context, this paper analyses the real operation of a SLB in three scenarios: two of residential microgrids with photovoltaic generation under different strategies, and a fast charging station for electric mobility. To this end, three energy management strategies are developed, the first of which seeks to maximise the self-consumption of a typical household with photovoltaic generation; the second, in addition to maximising self-consumption, presents a night-time charge and peak shaving of the contract power from the grid; and the last refers to an urban bus charging station in which the aim is to reduce the contract power from the grid. Experimental validation of SLB during more than three weeks of operation in each of the scenarios have proved the technical viability of these batteries in the applications analysed.
  • PublicationOpen Access
    Zero-loss switching in LLC resonant converters under discontinuous conduction mode: analysis and design methodology
    (IEEE, 2023) Elizondo MartĂ­nez, David; Barrios RĂ­podas, Ernesto; Larequi, ĂĂ±igo; UrsĂșa Rubio, Alfredo; Sanchis GĂșrpide, Pablo; IngenierĂ­a ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad PĂșblica de Navarra / Nafarroako Publikoa Unibertsitate
    Many thriving applications where isolation is required, such as LED drivers, traction and EV fast charging, implement LLC resonant converters, particularly when voltage regulation is not required or an additional conversion stage is in charge of it. The LLC converter can be operated under discontinuous conduction mode (DCM), due to its advantages such as unregulated and sensorless operation, fixed switching frequency and voltage gain, and zero-current switching (ZCS). However, ZCS results in EMI and switching losses in the primary converter, particularly for≄1200-V devices. Alternatively, zero-loss switching (ZLS) can be accomplished by means of a proper design of the LLC converter, overcoming the drawbacks of ZCS. The focus of this paper is to perform an exhaustive research on the LLC converter under DCM-ZLS: discontinuous conduction mode with lossless switching in the primary and secondary sides. As a result of this analysis, a set of design boundaries are deduced for parameters such as the magnetizing inductance, the leakage inductance, and the gate resistance. A comprehensive, step-by-step design methodology is proposed and applied to a 18-kW, 200-kHz test bench. The designed parameters are implemented in the converter and several experiments are conducted, including a test at rated input voltage and rated power (600 V, 18 kW). The conduction states studied theoretically in the analysis of the LLC converter are identified in the experimental results, and the operation of the test bench under DCM-ZLS is verified.
  • PublicationOpen Access
    Health indicator selection for state of health estimation of second-life lithium-ion batteries under extended ageing
    (Elsevier, 2022) Braco Sola, Elisa; San MartĂ­n Biurrun, Idoia; Sanchis GĂșrpide, Pablo; UrsĂșa Rubio, Alfredo; Stroe, Daniel-Ioan; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; IngenierĂ­a ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Gobierno de Navarra / Nafarroako Gobernua; Universidad PĂșblica de Navarra / Nafarroako Unibertsitate Publikoa
    Nowadays, the economic viability of second-life (SL) Li-ion batteries from electric vehicles is still uncertain. Degradation assessment optimization is key to reduce costs in SL market not only at the repurposing stage, but also during SL lifetime. As an indicator of the ageing condition of the batteries, state of health (SOH) is currently a major research topic, and its estimation has emerged as an alternative to traditional characterization tests. In an initial stage, all SOH estimation methods require the extraction of health indicators (HIs), which influence algorithm complexity and on-board implementation. Nevertheless, a literature gap has been identified in the assessment of HIs for reused Li-ion batteries. This contribution targets this issue by analysing 58 HIs obtained from incremental capacity analysis, partial charging, constant current and constant voltage stage, and internal resistance. Six Nissan Leaf SL modules were aged under extended cycling testing, covering a SOH range from 71.2 % to 24.4 %. Results show that the best HI at the repurposing stage was obtained through incremental capacity analysis, with 0.2 % of RMSE. During all SL use, partial charge is found to be the best method, with less than 2.0 % of RMSE. SOH is also estimated using the best HI and different algorithms. Linear regression is found to overcome more complex options with similar estimation accuracy and significantly lower computation times. Hence, the importance of analysing and selecting a good SL HI is highlighted, given that this made it possible to obtain accurate SOH estimation results with a simple algorithm.
  • PublicationOpen Access
    Identification of critical parameters for the design of energy management algorithms for Li-ion batteries operating in PV power plants
    (IEEE, 2020) Berrueta Irigoyen, Alberto; Soto Cabria, AdriĂĄn; Marcos Álvarez, Javier; Parra Laita, ĂĂ±igo de la; Sanchis GĂșrpide, Pablo; UrsĂșa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; IngenierĂ­a ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Universidad PĂșblica de Navarra / Nafarroako Unibertsitate Publikoa, ReBMS PJUPNA1904; Gobierno de Navarra / Nafarroako Gobernua, 0011-1411-2018-000029 GERA
    Lithium-ion batteries are gaining importance for a variety of applications due to their price decrease and characteristics improvement. For a proper use of such storage systems, an energy management algorithm (EMA) is required. A number of EMAs, with various characteristics, have been published recently, given the diverse nature of battery problems. The EMA of deterministic battery problems is usually based on an optimization algorithm. The selection of such an algorithm depends on a few problem characteristics, which need to be identified and closely analyzed. The aim of this article is to identify the critical optimization problem parameters that determine the most suitable EMA for a Li-ion battery. With this purpose, the starting point is a detailed model of a Li-ion battery. Three EMAs based on the algorithms used to face deterministic problems, namely dynamic, linear, and quadratic programming, are designed to optimize the energy dispatch of such a battery. Using real irradiation and power price data, the results of these EMAs are compared for various case studies. Given that none of the EMAs achieves the best results for all analyzed cases, the problem parameters that determine the most suitable algorithm are identified to be four, i.e., desired computation intensity, characteristics of the battery aging model, battery energy and power capabilities, and the number of optimization variables, which are determined by the number of energy storage systems, the length of the optimization problem, and the desired time step.