Person:
Ursúa Rubio, Alfredo

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Ursúa Rubio

First Name

Alfredo

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

ORCID

0000-0001-6240-8659

person.page.upna

3245

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Temperature indicators and overtemperature detection in lithium-ion batteries based on electrochemical impedance spectroscopy
    (IEEE, 2023) Lalinde Sainz, Iñaki; Berrueta Irigoyen, Alberto; Soto Cabria, Adrián; Arza, Joseba; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Lithium-ion batteries are the leading technology for energy storage systems due to their attractive advantages. However, the safety of lithium-ion batteries is a major concern, as their operating conditions are limited in terms of temperature, voltage and state of charge. Therefore, it is important to monitor the conditions of lithium-ion batteries to guarantee safe operation. To this end, in the present work, we analyze electrochemical impedance spectroscopy (EIS) as a tool to estimate the temperature of batteries. Overtemperature abuse tests from 25 °C to 140 °C are performed at various states of charge, and EIS measurements are obtained during the tests. The influence of temperature on cell impedance at different frequencies is analyzed and new findings are revealed. The real part of the impedance is identified to be the best indicator for cell temperature estimation by EIS. In addition, the best frequency to achieve accurate temperature monitoring, avoiding disturbances produced by state of charge variations, is proposed based on experimental results. Finally, EIS is proven to be a reliable technique for overtemperature and thermal runaway detection.
  • PublicationOpen Access
    On the characterization of lithium-ion batteries under overtemperature and overcharge conditions: identification of abuse areas and experimental validation
    (Elsevier, 2024) Lalinde Sainz, Iñaki; Berrueta Irigoyen, Alberto; Arza, Joseba; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Although lithium-ion batteries have gained considerable popularity in renewable energy and electric vehicle applications, their safety still remains a concern under certain voltage, temperature, or state of charge conditions. This can lead to degradation and potential thermal runaway. In order to improve the safety assessment of LIBs based on their operating conditions, it is therefore essential to analyze not only their safe operating area but also their abuse region. This study focuses on the characterization of the abuse region of lithium-ion batteries by proposing a new methodology in which four areas of abuse are identified and experimentally validated using a commercial 3.6 Ah pouch cell. The cell is subjected to overtemperature and overcharge conditions, exploring various states of charge (0 to 200%) and ambient temperatures (25 to 100 °C). The influence of temperature and state of charge on the battery's behavior is thoroughly analyzed to fully characterize the abuse region. Results reveal the limiting temperatures and states of charge that define the boundaries of the abuse areas. By extending the characterization of LIBs behavior beyond the safe operation area with the determination of four areas of abuse, this article contributes to a better understanding of the phenomena and abuse mechanisms produced by overtemperature and overcharge events with an eye to improving battery safety.