Person:
Ursúa Rubio, Alfredo

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Ursúa Rubio

First Name

Alfredo

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

ORCID

0000-0001-6240-8659

person.page.upna

3245

Name

Search Results

Now showing 1 - 10 of 21
  • PublicationOpen Access
    Influence of the aging model of lithium-ion batteries on the management of PV self-consumption systems
    (IEEE, 2018) Berrueta Irigoyen, Alberto; Pascual Miqueleiz, Julio María; San Martín Biurrun, Idoia; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua, PI038 INTEGRA-RENOVABLES
    Lithium-ion batteries are gaining importance for a variety of applications due to their improving characteristics and decreasing price. An accurate knowledge of their aging is required for a successful use of these ESSs. The vast number of models that has been proposed to predict these phenomena raise doubts about the suitability of a model for a particular battery application. The performance of three models published for a Sanyo 18650 cylindrical cell in a self-consumption system are compared in this work. Measured photovoltaic production and home consumption with a sampling frequency of 15 minutes are used for this comparison. The different aging predictions calculated by these three models are analyzed, compared and discussed. These comparison is particularized for two management strategies. The first of them maximizes the self-consumption PV energy, while the second reduces the maximum power peak demanded from the grid.
  • PublicationOpen Access
    State of health estimation of second-life lithium-ion batteries under real profile operation
    (Elsevier, 2022) Braco Sola, Elisa; San Martín Biurrun, Idoia; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Stroe, Daniel-Ioan; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The economic viability of second-life (SL) Li-ion batteries from electric vehicles (EVs) is still uncertain nowadays. Assessing the internal state of reused cells is key not only at the repurposing stage but also during their SL operation. As an alternative of the traditional capacity tests used to this end, the estimation of State of Health (SOH) allows to reduce the testing time and the need of equipment, thereby reinforcing the economic success of SL batteries. However, the estimation of SOH in real SL operation has been rarely analysed in literature. This contribution aims thus to cover this gap, by focusing on the experimental assessment of SOH estimation in reused modules from Nissan Leaf EVs under two SL scenarios: a residential household with self-consumption and a fast charge station for EVs. By means of partial charge and experimental data from cycling and calendar ageing tests, accuracy and robustness of health indicators is firstly assessed. Then, SOH estimation is carried out using real profiles, covering a SOH range from 91.3 to 31%. Offline assessment led to RMSE values of 0.6% in the residential profile and 0.8% in the fast charge station, with a reduction in testing times of 85% compared to a full capacity test. In order to avoid the interruption of battery operation, online assessment in profiles was also analysed, obtaining RMSE values below 1.3% and 3.6% in the residential and charging station scenarios, respectively. Therefore, the feasibility of SOH estimation in SL profiles is highlighted, as it allows to get accurate results reducing testing times or even without interrupting normal operation.
  • PublicationOpen Access
    Fast capacity and internal resistance estimation method for second-life batteries from electric vehicles
    (Elsevier, 2023) Braco Sola, Elisa; San Martín Biurrun, Idoia; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The success of second-life (SL) Li-ion batteries from electric vehicles is still conditioned by their technical and economic viability. The knowledge of the internal parameters of retired batteries at the repurposing stage is key to ensure their adequate operation and to enlarge SL lifetime. However, traditional characterization methods require long testing times and specific equipment, which result in high costs that may jeopardize the economic viability of SL. In the seek of optimizing the repurposing stage, this contribution proposes a novel fast characterization method that allows to estimate capacity and internal resistance at various state of charge for reused cells, modules and battery packs. Three estimation models are proposed. The first of them is based on measurements of AC resistance, the second on DC resistance and the third combines both resistance types. These models are validated in 506 cells, 203 modules and 3 battery packs from different Nissan Leaf vehicles. The results achieved are satisfactory, with mean absolute percentage errors (MAPE) below 2.5% at cell and module level in capacity prediction and lower than 2.4% in resistance estimation. Considering battery pack level, MAPE is below 4.2% and 1.8% in capacity and resistance estimation respectively. With the proposed method, testing times are reduced from more than one day to 2 min per cell, while energy consumption is lowered from 1.4 kWh to 1 Wh. In short, this study contributes to the reduction of repurposing procedures and costs, and ultimately to the success of SL batteries business model.
  • PublicationOpen Access
    Comparison of State-of-Charge estimation methods for stationary Lithium-ion batteries
    (IEEE, 2016) Berrueta Irigoyen, Alberto; San Martín Biurrun, Idoia; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC
    An accurate monitoring of the State of Charge (SoC) is mandatory for an efficient management of a Lithium-ion battery. Batteries of stationary systems barely have long resting periods when the cumulative errors can be reset. These special requirements make a robust and accurate SoC estimation algorithm necessary. A real stationary system including an experimental microgrid with renewable energy generation, home consumption and a 5.3 kWh Li-ion storage system is analyzed in this paper. Three representative SoC monitoring algorithms are applied and compared in terms of accuracy and robustness to battery aging and current measurement offset. A closed-loop method consisting of an adaptive filter and a state observer achieves best results while having a reasonable computational complexity.
  • PublicationOpen Access
    Electro-thermal modelling of a supercapacitor and experimental validation
    (Elsevier, 2014) Berrueta Irigoyen, Alberto; San Martín Biurrun, Idoia; Hernández, Andoni; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    This paper reports on the electro-thermal modelling of a Maxwell supercapacitor (SC), model BMOD0083 with a rated capacitance of 83 F and rated voltage of 48 V. One electrical equivalent circuit was used to model the electrical behaviour whilst another served to simulate the thermal behaviour. The models were designed to predict the SC operating voltage and temperature, by taking the electric current and ambient temperature as input variables. A five-stage iterative method, applied to three experiments, served to obtain the parameter values for each model. The models were implemented in MATLABSimulink , where they interacted to reciprocally provide information. These models were then validated through a number of tests, subjecting the SC to different current and frequency profiles. These tests included the validation of a bank of supercapacitors integrated into an electric microgrid, in a real operating environment. Satisfactory results were obtained from the electric and thermal models, with RMSE values of less than 0.65 V in all validations.
  • PublicationOpen Access
    Incremental capacity analysis of lithium-ion second-life batteries from electric vehicles under cycling ageing
    (IEEE, 2021) Braco Sola, Elisa; San Martín Biurrun, Idoia; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako Gobernua
    Nowadays, the reuse of batteries from electric vehicles is considered a promising solution to benefit from their remaining energy and extend their lifespan. Yet, the economic viability of these second-life batteries is still uncertain, and the optimization of testing at their reconfiguration stage and during their lifetime is the key to ensure their success. This paper aims to assess Incremental Capacity Analysis technique in Nissan Leaf modules during their second-life use, in order to evaluate both its potential as an State of Health estimator and as a tool to identify underlying degradation mechanisms. Despite the different internal state and ageing rates observed between the tested modules, ICA is found to be consistent at similar SOH levels. The influence of ageing, current and temperature on ICA is evaluated through an accelerated cycling test. Results show that ICA is a promising alternative to estimate SOH during second life even at currents up to C/2 and testing temperatures of 45 °C. However, testing by accelerated currents and temperatures is not recommended for the identification of degradation mechanisms.
  • PublicationOpen Access
    Experimental assessment of first- and second-life electric vehicle batteries: performance, capacity dispersion, and aging
    (IEEE, 2021) Braco Sola, Elisa; San Martín Biurrun, Idoia; Berrueta Irigoyen, Alberto; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako Gobernua
    Nowadays, the reuse of electric vehicle batteries is considered to be a feasible alternative to recycling, as it allows them to benefit from their remaining energy capacity and to enlarge their lifetime. Stationary applications, such as self-consumption or off-grid systems support, are examples of second-life (SL) uses for retired batteries. However, reused modules that compose these batteries have heterogeneous properties, which limit their performance. This article aims to assess the influence of degradation in modules from electric vehicles, covering three main aspects: performance, capacity dispersion, and extended SL behavior. First, a complete characterization of new and reused modules is carried out, considering three temperatures and three discharge rates. In the second stage, intra- and intermodule capacity dispersions are evaluated with new and reused samples. Finally, the behavior during SL is also analyzed, through an accelerated cycling test so that the evolution of capacity and dispersion are assessed. Experimental results show that the performance of reused modules is especially undermined at low temperatures and high current rates, as well as in advanced stages of aging. The intramodule dispersion is found to be similar in reused and new samples, while the intermodule differences are nearly four times greater in SL.
  • PublicationOpen Access
    Health indicator selection for state of health estimation of second-life lithium-ion batteries under extended ageing
    (Elsevier, 2022) Braco Sola, Elisa; San Martín Biurrun, Idoia; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Stroe, Daniel-Ioan; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Nowadays, the economic viability of second-life (SL) Li-ion batteries from electric vehicles is still uncertain. Degradation assessment optimization is key to reduce costs in SL market not only at the repurposing stage, but also during SL lifetime. As an indicator of the ageing condition of the batteries, state of health (SOH) is currently a major research topic, and its estimation has emerged as an alternative to traditional characterization tests. In an initial stage, all SOH estimation methods require the extraction of health indicators (HIs), which influence algorithm complexity and on-board implementation. Nevertheless, a literature gap has been identified in the assessment of HIs for reused Li-ion batteries. This contribution targets this issue by analysing 58 HIs obtained from incremental capacity analysis, partial charging, constant current and constant voltage stage, and internal resistance. Six Nissan Leaf SL modules were aged under extended cycling testing, covering a SOH range from 71.2 % to 24.4 %. Results show that the best HI at the repurposing stage was obtained through incremental capacity analysis, with 0.2 % of RMSE. During all SL use, partial charge is found to be the best method, with less than 2.0 % of RMSE. SOH is also estimated using the best HI and different algorithms. Linear regression is found to overcome more complex options with similar estimation accuracy and significantly lower computation times. Hence, the importance of analysing and selecting a good SL HI is highlighted, given that this made it possible to obtain accurate SOH estimation results with a simple algorithm.
  • PublicationOpen Access
    Characterization and capacity dispersion of lithium-ion second-life batteries from electric vehicles
    (IEEE, 2019) Braco Sola, Elisa; San Martín Biurrun, Idoia; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua
    Nowadays, electric vehicle batteries reutilization is considered such as a feasible alternative to recycling, as it allows to benefit from their remaining energy and to enlarge their lifetime. Stationary applications as self-consumption or isolated systems support are examples of possible second life uses for these batteries. However, the modules that compose these batteries have very heterogeneous properties, and therefore condition their performance. This paper aims to characterize and analyze the existing capacity dispersion of Nissan Leaf modules that have reached the end of their lifetime on their original application and of new modules of this Electric Vehicle, in order to establish a comparison between them.
  • PublicationOpen Access
    Hydrogen-based energy storage for a distributed generation system
    (Spanish Hydrogen Association, 2016) San Martín Biurrun, Idoia; Berrueta Irigoyen, Alberto; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    One of the most typical distributed generation systems are electrical microgrid, which consist on small electrical grids, generally connected to the main grid, with a decentralized management structure. Electrical microgrids allow higher renewable energy integration in the grid, achieving a cost decrease and improving the grid quality [1]. These mi- crogrids incorporate renewable generation systems and energy consumers. Moreover, they have storage systems to balance generation and consumption as well as the exchanged power with the main grid. Traditionally, lead-acid batter- ies have been used in microgrids. However, these batteries have some drawbacks, being the most important its poor performance in partial state of charge, which is critical for a microgrid. A suitable option for the storage system is hy- drogen technology. These systems have high energy density, which makes the storage system able to assume seasonal variability of renewable resources. This paper proposes a sizing methodology for storage systems based on hydrogen for grid-tied electrical microgrids. This methodology optimizes the relationship between the storage system size and the consumption of grid power.